acyrthosiphon pisum
Recently Published Documents


TOTAL DOCUMENTS

885
(FIVE YEARS 152)

H-INDEX

65
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Karine Loth ◽  
Nicolas Parisot ◽  
Francoise Paquet ◽  
Catherine Sivignon ◽  
Isabelle Rahioui ◽  
...  

Aphids (Hemiptera: Aphidoidea) are among the most injuring insects for agricultural plants and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR), provides an alternative to chemical insecticides for pest control. BCRs have been initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect derived cells that host intracellular symbiotic bacteria. Here, we show that one out of the A. pisum BCRs, BCR4, displays an outstanding insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticides. Our comparative genomics and phylogenetic analysis indicate that BCRs seem restricted to the aphid lineage. The 3D structure of the BCR4 reveals that this peptide belongs to a yet unknown structural class of peptides and defines a new superfamily of defensins.


2021 ◽  
Author(s):  
Tomonari Nozaki ◽  
Shuji Shigenobu

AbstractAphids have evolved bacteriocytes or symbiotic host cells that harbor the obligate mutualistic bacterium Buchnera aphidicola. Because of the large cell size (approximately 100 μm in diameter) of bacteriocytes and their pivotal role in nutritional symbiosis, researchers have considered that these cells are highly polyploid and assumed that bacteriocyte polyploidy may be essential for the symbiotic relationship between the aphid and the bacterium. However, little is known about the ploidy levels and dynamics of aphid bacteriocytes. Here, we quantitatively analyzed the ploidy levels in the bacteriocytes of the pea-aphid Acyrthosiphon pisum. Image-based fluorometry revealed the hyper polyploidy of the bacteriocytes ranging from 16- to 256-ploidy throughout the lifecycle. Bacteriocytes of adult parthenogenetic viviparous females were mainly 64-128C DNA levels, while those of sexual morphs (oviparous females and males) were consisted of 64C, and 32-64C cells, respectively. During post-embryonic development of viviparous females, the ploidy level of bacteriocytes increased substantially, from 16-32C at birth to 128-256C in actively reproducing adults. These results suggest that the ploidy levels are dynamically regulated among phenotypes and during development. Our comprehensive and quantitative data provides a foundation for future studies to understand the functional roles and biological significance of the polyploidy of insect bacteriocytes.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1080
Author(s):  
Karim El Fakhouri ◽  
Abdelhadi Sabraoui ◽  
Zakaria Kehel ◽  
Mustapha El Bouhssini

Pea aphid (Acyrthosiphon pisum Harris) is the major insect pest of lentil in Morocco. We investigated pea aphid mean numbers and yield losses on three lentil varieties at one location during three successive cropping seasons during 2015–2018. The effects of several weather factors on pea aphid population dynamics were investigated. Population density increased in early spring followed by several peaks during March–April and then steeply declined during the late spring. Aphid populations peaked at different times during the three years of the study. In 2016, higher populations occurred during the second and third weeks of April for Abda and Zaria varieties with averages of 27 and 28 aphids/20 twigs, respectively. In 2017, higher populations occurred on the 12th and 13th standard meteorological weeks (SMWs) for Zaria with averages of 24.7 and 27.03 aphids/20 twigs, respectively. In 2018, the population peaked for all varieties at three different times, 11th, 13th, and 17th SMW, with the highest for Zaria being 26.00, 47.41, and 32.33 aphids/20 twigs. Pea aphid population dynamics changed with weather conditions. The number of aphids significantly and positively correlated with maximum temperature, but significantly negatively correlated with relative humidity and wind speed. The minimum temperature and rainfall had non-significant correlations. Pea aphid infestation resulted in losses of total seed weight for all lentil varieties, with the highest avoidable losses for Bakria being 12.51% followed by Zaria with 7.72% and Abda with 4.56%. These losses may justify the development of integrated management options for control of this pest.


Author(s):  
Virgile Neyman ◽  
Frédéric Francis ◽  
André Matagne ◽  
Marc Dieu ◽  
Catherine Michaux ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1053
Author(s):  
Chunchun Li ◽  
Weining Yuan ◽  
Yuping Gou ◽  
Kexin Zhang ◽  
Qiangyan Zhang ◽  
...  

Natural and anthropogenic changes have been altering many environmental factors. These include the amount of solar radiation reaching the Earth’s surface. However, the effects of solar radiation on insect physiology have received little attention. As a pest for agriculture and horticulture, aphids are one of the most difficult pest groups to control due to their small size, high fecundity, and non-sexual reproduction. Study of the effects of UV-B radiation on aphid physiology may provide alternative control strategies in pest management. In this study, we examined the effects of UV-B radiation on protein and sugar contents, as well as the activities of protective enzymes, of the red and green morphs of the pea aphid over eight generations. The results indicated a significant interaction between UV-B radiation and aphid generations. Exposure of the pea aphids to UV-B radiation caused a significant decrease in the protein content and a significant increase in the glycogen and trehalose contents at each generation as measured in whole aphid bioassays. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of the pea aphids changed significantly at each generation with UV-B treatments. The SOD activity increased over eight generations to the highest level at G7 generation. However, the enzyme activity of CAT first increased and then decreased with UV-B treatments, and POD mostly gradually decreased over the eight generations. Therefore, UV-B radiation is an environmental factor that could result in physiological changes of the pea aphid. Moreover, our study discovered that red and green aphids did not display a significant consistent difference in the response to the UV-B treatments. These results may prove useful in future studies especially for assessing their significance in the adaptation and management against UV-B radiation.


2021 ◽  
Author(s):  
Mahsa Mansourpour ◽  
Romain Gallet ◽  
Alireza Abbasi ◽  
Stephane Blanc ◽  
Akbar Dizadji ◽  
...  

Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (hereafter named SCSA 1) on various important traits of faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum , including disease symptoms, viral accumulation and transmission. The results indicate that SCSA 1 does not affect the symptom severity nor the overall FBNYV accumulation in V. faba, but changes the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to simple increase of the viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. Importance Alphasatellites are circular single stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruse, the two ssDNA plant infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both plant and vector. We also confirm that while within-plant virus load and symptom are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load, but significantly increases virus transmission rate, so may confer a possible evolutionary advantage for the helper virus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mitzy F. Porras ◽  
Gustavo A. Agudelo-Cantero ◽  
M. Geovanni Santiago-Martínez ◽  
Carlos A. Navas ◽  
Volker Loeschcke ◽  
...  

AbstractPathogens can modify many aspects of host behavior or physiology with cascading impacts across trophic levels in terrestrial food webs. These changes include thermal tolerance of hosts, however the effects of fungal infections on thermal tolerances and behavioral responses to extreme temperatures (ET) across trophic levels have rarely been studied. We examined how a fungal pathogen, Beauveria bassiana, affects upper and lower thermal tolerance, and behavior of an herbivorous insect, Acyrthosiphon pisum, and its predator beetle, Hippodamia convergens. We compared changes in thermal tolerance limits (CTMin and CTMax), thermal boldness (voluntary exposure to ET), energetic cost (ATP) posed by each response (thermal tolerance and boldness) between healthy insects and insects infected with two fungal loads. Fungal infection reduced CTMax of both aphids and beetles, as well as CTMin of beetles. Fungal infection modified the tendency, or boldness, of aphids and predator beetles to cross either warm or cold ET zones (ETZ). ATP levels increased with pathogen infection in both insect species, and the highest ATP levels were found in individuals that crossed cold ETZ. Fungal infection narrowed the thermal tolerance range and inhibited thermal boldness behaviors to cross ET. As environmental temperatures rise, response to thermal stress will be asymmetric among members of a food web at different trophic levels, which may have implications for predator–prey interactions, food web structures, and species distributions.


Sign in / Sign up

Export Citation Format

Share Document