luteal regression
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 15)

H-INDEX

31
(FIVE YEARS 3)

Author(s):  
Deepak J ◽  
C. Jayakumar, Hiron M. Harshan and K. D. John Martin M. P. ◽  
Hiron M. Harshan and K. D. John Martin C. ◽  
John Martin K. D. ◽  
John Martin K. D.

A study was conducted in 18 healthy, fertile, non-pregnant, dioestrous female dogs to evaluate the efficacy of PGF2? analogue (cloprostenol sodium) in shortening the dioestrus. Bitches that were diagnosed non-pregnant by trans-abdominal ultrasonography, on day 30 of breeding and their dioestrual stage confirmed by serum progesterone assay, were randomly allotted to three groups of six bitches each. Group I and II bitches were treated with cloprostenol sodium @ 2.5 µg/kg b. wt., subcutaneously, thrice at 48 h interval, beginning on day 30 and 45 of last breeding, respectively. Group III animals were assigned as control and were left untreated. Fifty days from first injection of cloprostenol, serum progesterone assay was carried out among the animals in Group I and II whereas the same was done among Group III bitches on day 90 after last breeding. Among Group I and II, mean serum progesterone concentrations were 0.93 ± 0.04 and 0.87 ± 0.01ng/ mL, respectively whereas the level was 1.72 ± 0.9 ng/mL among control group; highly significant difference (p<0.01) existed between control and treatment groups. The present study indicated that administration of PGF2? analogue during dioestrus enhances the pace of luteal regression among non-pregnant bitches.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dianrong Li ◽  
Jie Chen ◽  
Jia Guo ◽  
Lin Li ◽  
Gaihong Cai ◽  
...  

Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) normally signals to necroptosis by phosphorylating MLKL. We report here that when the cellular RIPK3 chaperone Hsp90/CDC37 level is low, RIPK3 also signals to apoptosis. The apoptotic function of RIPK3 requires phosphorylation of the serine 165/threonine 166 sites on its kinase activation loop, resulting in inactivation of RIPK3 kinase activity while gaining the ability to recruit RIPK1, FADD, and caspase-8 to form a cytosolic caspase-activating complex, thereby triggering apoptosis. We found that PGF2α induces RIPK3 expression in luteal granulosa cells in the ovary to cause luteal regression through this RIPK3-mediated apoptosis pathway. Mice carrying homozygous phosphorylation-resistant RIPK3 S165A/T166A knockin mutations failed to respond to PGF2α but retained pro-necroptotic function, whereas mice with phospho-mimicking S165D/T166E homozygous knock-in mutation underwent spontaneous apoptosis in multiple RIPK3-expressing tissues and died shortly after birth. Thus, RIPK3 signals to either necroptosis or apoptosis depending on its serine 165/threonine 166 phosphorylation status.


Author(s):  
Laura Morales ◽  
Sandra Vallcaneras ◽  
María Belén Delsouc ◽  
Verónica Filippa ◽  
Claudia Aguilera-Merlo ◽  
...  

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Meeti Punetha ◽  
Sai Kumar ◽  
Avishek Paul ◽  
Bosco Jose ◽  
Jaya Bharati ◽  
...  

Abstract Background PGF2α is essential for the induction of the corpus luteum regression which in turn reduces progesterone production. Early growth response (EGR) proteins are Cys2-His2-type zinc-finger transcription factor that are strongly linked to cellular proliferation, survival and apoptosis. Rapid elevation of EGR1 was observed after luteolytic dose of PGF2α. EGR1 is involved in the transactivation of many genes, including TGFβ1, which plays an important role during luteal regression. Methods The current study was conducted in buffalo luteal cells with the aim to better understand the role of EGR1 in transactivation of TGFβ1 during PGF2α induced luteal regression. Luteal cells from mid stage corpus luteum of buffalo were cultured and treated with different doses of PGF2α for different time durations. Relative expression of mRNAs encoding for enzymes within the progesterone biosynthetic pathway (3βHSD, CYP11A1 and StAR); Caspase 3; AKT were analyzed to confirm the occurrence of luteolytic event. To determine if EGR1 is involved in the PGF2α induced luteal regression via induction of TGFβ1 expression, we knocked out the EGR1 gene by using CRISPR/Cas9. Result The present experiment determined whether EGR1 protein expression in luteal cells was responsive to PGF2α treatment. Quantification of EGR1 and TGFβ1 mRNA showed significant up regulation in luteal cells of buffalo at 12 h post PGF2α induction. In order to validate the role of PGF2α on stimulating the expression of TGFβ1 by an EGR1 dependent mechanism we knocked out EGR1. The EGR1 ablated luteal cells were stimulated with PGF2α and it was observed that EGR1 KO did not modulate the PGF2α induced expression of TGFβ1. In PGF2α treated EGR1 KO luteal cell, the mRNA expression of Caspase 3 was significantly increased compared to PGF2α treated wild type luteal cells maintained for 12 h. We also studied the influence of EGR1 on steroidogenesis. The EGR1 KO luteal cells with PGF2α treatment showed no substantial difference either in the progesterone concentration or in StAR mRNA expression with PGF2α-treated wild type luteal cells. Conclusion These results suggest that EGR1 signaling is not the only factor which plays a role in the regulation of PGF2α induced TGFβ1 signaling for luteolysis.


2021 ◽  
Author(s):  
Dianrong Li ◽  
Jie Chen ◽  
Jia Guo ◽  
Lin Li ◽  
Gaihong Cai ◽  
...  

AbstractReceptor-interacting serine/threonine-protein kinase 3 (RIPK3) normally signals to necroptosis by phosphorylating MLKL. We report here that when the cellular RIPK3 chaperone Hsp90/CDC37 level is low, RIPK3 also signals to apoptosis. The apoptotic function of RIPK3 requires phosphorylation of the serine 165/threonine 166 sites on its kinase activation loop, resulting in inactivation of RIPK3 kinase activity while gaining the ability to recruit RIPK1, FADD, and caspase-8 to form a cytosolic caspase-activating complex, thereby triggering apoptosis. We found that PGF2α induces RIPK3 expression in luteal granulosa cells in the ovary to cause luteal regression through this RIPK3-mediated apoptosis pathway. Mice carrying homozygous phosphorylation-resistant RIPK3 S165A/T166A knockin mutations failed to respond to PGF2α but retained pro-necroptotic function, whereas mice with phospho-mimicking S165D/T166E homozygous knockin mutation underwent spontaneous apoptosis in multiple RIPK3-expressing tissues and died shortly after birth. Thus, RIPK3 signals to either necroptosis or apoptosis depending on its serine 165/threonine 166 phosphorylation status.


2020 ◽  
Vol 43 (2) ◽  
pp. 161-167
Author(s):  
Branko Atanasov ◽  
Nikola Adamov ◽  
Irena Celeska ◽  
Ksenija Ilievska ◽  
Branko Angjelovski ◽  
...  

AbstractWe hypothesized that a single dose of PGF2α belatedly injected on day 8 after GnRH-1 in cows receiving a 7-day Ovsynch-56 protocol (GnRH – 7 days – PGF2α – 56h – GnRH – 16h – timed AI) will increase the proportion of cows with complete luteolysis. At day 35±3 postpartum, 70 lactating Holstein cows from one herd were scored for body condition and pre-synchronized with PGF2α and GnRH (3 days apart) and 7 days later submitted to an Ovsynch-56 protocol for first AI after random assignment to two treatments: (1) OV-7 (n=35) with an injection of PGF2α either on day 7; or (2) OV-8 (n=35) on day 8 after G1, respectively. Blood was collected before the first PGF2α, at day 7 and day 8 in OV-7 and OV-8, respectively, at AI and at 7 days after AI to assess progesterone concentration. Ten cows were classified as acyclic and were excluded from the analysis resulting in 60 cows (OV-8, n=27; OV-7, n=33). In total, more (P=0.01) OV-8 cows and more (P=0.04) primiparous OV-8 cows had complete luteolysis compared with their OV-7 herd mates. In addition, more (P=0.008) OV-8 cows with BCS<2.75 had complete luteolysis compared with their OV-7 herd mates, whereas no difference was observed between treatments among cows with BCS ≥2.75. In conclusion, delaying the application of PGF2α by 1 day reduced the percentage of primiparous cows and cows with poorer BCS having incomplete luteal regression at the time of AI.


2020 ◽  
Vol 103 (3) ◽  
pp. 2743-2755 ◽  
Author(s):  
M. Masello ◽  
M. Scarbolo ◽  
M.V. Schneck ◽  
M.M. Perez ◽  
E.M. Schillkowsky ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 821
Author(s):  
Kristin M. Klohonatz ◽  
Stephen J. Coleman ◽  
Ashley D. Cameron ◽  
Ann M. Hess ◽  
Kailee J. Reed ◽  
...  

Maternal recognition of pregnancy (MRP) in the mare is not well defined. In a non-pregnant mare, prostaglandin F2α (PGF) is released on day 14 post-ovulation (PO) to cause luteal regression, resulting in loss of progesterone production. Equine MRP occurs prior to day 14 to halt PGF production. Studies have failed to identify a gene candidate for MRP, so attention has turned to small, non-coding RNAs. The objective of this study was to evaluate small RNA (<200 nucleotides) content in endometrium during MRP. Mares were used in a cross-over design with each having a pregnant and non-mated cycle. Each mare was randomly assigned to collection day 11 or 13 PO (n = 3/day) and endometrial biopsies were obtained. Total RNA was isolated and sequencing libraries were prepared using a small RNA library preparation kit and sequenced on a HiSeq 2000. EquCab3 was used as the reference genome and DESeq2 was used for statistical analysis. On day 11, 419 ncRNAs, representing miRNA, snRNA, snoRNA, scaRNA, and vaultRNA, were different between pregnancy statuses, but none on day 13. Equine endometrial ncRNAs with unknown structure and function were also identified. This study is the first to describe ncRNA transcriptome in equine endometrium. Identifying targets of these ncRNAs could lead to determining MRP.


Steroids ◽  
2019 ◽  
Vol 148 ◽  
pp. 19-27
Author(s):  
María B. Delsouc ◽  
Cynthia D. Bronzi ◽  
Cristina Daneri Becerra ◽  
María M. Bonaventura ◽  
Fabián H. Mohamed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document