Circulating insulin-like growth factors-I and -II and substrates in fetal sheep following restriction of placental growth

1994 ◽  
Vol 140 (1) ◽  
pp. 5-13 ◽  
Author(s):  
J A Owens ◽  
K L Kind ◽  
F Carbone ◽  
J S Robinson ◽  
P C Owens

Abstract To determine the relationship between placental delivery of oxygen and glucose, circulating insulin-like growth factors (IGFs) and fetal growth, the effect of variable restriction of placental growth was determined in sheep in late gestation. Arterial blood was obtained via indwelling catheters at 120 and 127 days of gestation, prior to necropsy at 130 days to measure fetal and placental weights. Plasma was acidified and subjected to size-exclusion high-performance liquid chromatography at pH 2·8 to dissociate and separate IGFs from their binding proteins. The acid-dissociated IGF fraction was analysed by sensitive and highly specific radioligand assays for IGF-I and IGF-II, previously defined using ovine IGFs. Fetal weight and blood pO2 and glucose at 120 and 127 days of gestation correlated positively with placental weight. Plasma IGF-I was positively associated with fetal weight and fetal liver weight, and with blood pO2 and glucose at both ages. Plasma IGF-II levels also correlated positively with fetal weight, fetal liver weight and with blood glucose and pO2, but only at 127 days of gestation. In the most severely growth-retarded fetal sheep, blood glucose and pO2 and plasma IGF-I were significantly reduced when compared with normal fetuses at 120 days. All decreased further by 127 days of gestation as did plasma IGF-II in severely growth-retarded fetal sheep compared with normal fetuses. These observations are consistent with the hypothesis that both IGF-I and IGF-II are chronically regulated by oxygen and nutrition in utero and mediate part of the influence of placental supply of substrate over fetal growth. Journal of Endocrinology (1994) 140, 5–13

1995 ◽  
Vol 146 (1) ◽  
pp. 23-34 ◽  
Author(s):  
K L Kind ◽  
J A Owens ◽  
J S Robinson ◽  
K J Quinn ◽  
P A Grant ◽  
...  

Abstract To determine whether tissue production of the IGFs is altered when fetal growth is retarded, IGF-I and -II mRNAs were measured in tissues of fetal sheep subjected to placental restriction and the relationships between IGF gene expression, circulating IGF protein and fetal growth were examined. The majority of potential placental attachment sites were surgically removed from the uterus of 12 non-pregnant ewes to restrict placental size in a subsequent pregnancy. Blood and tissues were collected at 121 days of gestation (term=150) in 12 fetuses with restricted placental size and eight normal fetuses. IGF-I and IGF-II mRNA was detected by solution hybridization/ribonuclease protection assay in placenta and all fetal tissues studied. IGF-I mRNA was most abundant in skeletal muscle and liver and IGF-II mRNA was highest in kidney and lung. Restriction of placental size reduced fetal weight by 17% and reduced the pO2 (18%) and glucose concentration (23%) of fetal blood. Placental restriction also reduced IGF-I mRNA in fetal muscle (P<0·002), lung (P<0·05) and kidney (P<0·01) but had no significant effect on IGF-II mRNA in any tissue. IGF-I mRNA in fetal liver, kidney and skeletal muscle correlated positively with the concentration of IGF-I protein in fetal blood (P<0·01). There was no relationship between the concentration of IGF-II protein in fetal blood and IGF-II mRNA in any fetal tissue examined. The concentration of IGF-binding protein-3 (IGFBP-3) in fetal arterial blood plasma measured by RIA correlated positively with fetal weight and with plasma IGF-I. This study shows that restriction of placental growth in sheep reduces circulating levels of IGF-I and IGFBP-3 in the sheep fetus and reduces the capacity of the fetus to produce IGF-I at a number of tissue sites. Altered production of IGF-I, but not IGF-II, by fetal tissues may contribute to retarded fetal growth. Journal of Endocrinology (1995) 146, 23–34


2000 ◽  
Vol 166 (3) ◽  
pp. 565-577 ◽  
Author(s):  
LR Green ◽  
Y Kawagoe ◽  
DJ Hill ◽  
BS Richardson ◽  
VK Han

Intermittent umbilical cord compression with resultant fetal hypoxia can have a negative impact on fetal growth and development. Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are the most important regulators of fetal growth. In preterm (107-108 days of gestation) and near-term (128-131 days of gestation) ovine fetuses, we have determined the effect of intermittent umbilical cord occlusion (UCO) over a period of 4 days on the profile and expression of IGFs and IGFBPs. In experimental group animals (preterm n=7; near term n=7) UCOs were carried out by complete inflation of an occluder cuff (duration 90 s) every 30 min for 3-5 h each day, while control fetuses (preterm n=7; near term n=7) received no UCOs. Ewes were euthanized at the end of day 4, and fetal heart, lung, kidney, liver, skeletal muscle and placenta were collected. During UCOs, PO(2! ) fell (by approximately 13 mmHg), pH fell (by approximately 0.05) and PCO(2) increased (by approximately 7 mmHg), and changed to a similar extent in both preterm and near-term groups. In both preterm and near-term groups, there was no difference in fetal body or organ weight between UCO and control fetuses. No significant changes were observed in plasma IGF-I and -II concentrations or IGFBP-1, -2, -3 or -4 levels throughout the 4-day study at either gestational age. In the preterm group UCO fetuses, IGF-II mRNA (1.2-6.0 kb) levels were lower in fetal lung (33%, P<0.05), heart (54%, P<0.01) and skeletal muscle (29%, P<0.05), but there were no differences in IGF-I mRNA levels (7.3 kb); IGFBP-2 mRNA (1.5 kb) levels were lower in the right lobe of the liver (42%, P<0.05) and kidney (22%, P<0.01), but hig! her in the heart (72%, P<0.01), while IGFBP-4 (2.4 kb) levels were lower in skeletal muscle (21%, P<0.01). In the near-term group UCO fetuses, IGFBP-2 mRNA levels were greater in the placenta (39%, P<0.05). Thus, intermittent UCO as studied has a greater effect on the expression of genes encoding certain peptides of the fetal IGF system in selected tissues in preterm fetuses than that in near-term fetuses. Altered IGFBP-2 mRNA levels with reduced IGF-II mRNA levels in selected tissues may mediate changes in growth and/or differentiation that might become apparent if the length of the UCO study were extended.


2006 ◽  
Vol 263 (6) ◽  
pp. E1151-E1156 ◽  
Author(s):  
H. S. Iwamoto ◽  
M. A. Murray ◽  
S. D. Chernausek

It has been proposed that insulin-like growth factor I (IGF-I) regulates fetal growth and differentiation. Plasma IGF-I concentrations correlate positively with fetal nutrient availability and newborn birth weights. To explore the hypothesis that hypoxemia decreases fetal growth by decreasing fetal IGF-I availability, we instrumented 14 fetal sheep with vascular catheters. At least 4 days after surgery, 10 fetuses were made acutely hypoxemic by infusing nitrogen into the maternal trachea for 3 h. Fetal blood oxyhemoglobin saturation decreased from 53 +/- 6 (SD) to 31 +/- 9%. Concomitantly, plasma IGF-I concentrations decreased from 91 +/- 11 to 67 +/- 10 ng/ml and IGF-I binding protein-1 concentration increased significantly, as assessed by ligand and Western blot analysis. Fetal IGF-I concentrations remained below control values throughout a subsequent recovery period (68 +/- 12 ng/ml at 6 h). In four control fetuses and in the ewes, plasma IGF-I concentrations were not significantly different from control values (97 +/- 18 and 181 +/- 18 ng/ml, respectively). These data support the hypothesis that decreases in fetal oxygen availability may decrease fetal growth by decreasing IGF-I production and availability.


2003 ◽  
Vol 177 (1) ◽  
pp. 83-92 ◽  
Author(s):  
MK Bauer ◽  
BB Breier ◽  
FH Bloomfield ◽  
EC Jensen ◽  
PD Gluckman ◽  
...  

Intra-uterine growth restriction (IUGR) is a major cause of perinatal mortality and morbidity. Postnatally, growth hormone (GH) increases growth, increases circulating insulin-like growth factor (IGF)-I levels, and alters metabolism. Our aim was to determine if GH infusion to IUGR fetal sheep would alter fetal growth and metabolism, and thus provide a potential intra-uterine treatment for the IUGR fetus. We studied three groups of fetuses: control, IUGR+ vehicle and IUGR+GH (n=5 all groups). IUGR was induced by repeated embolisation of the placental vascular bed between 110 and 116 days of gestation (term=145 days). GH (3.5 mg/kg/day) or vehicle was infused in a pulsatile manner from 117 to 127 days of gestation. Embolisation reduced fetal growth rate by 25% (P<0.01) and reduced the weight of the fetal liver (20%), kidney (23%) and thymus (31%; all P<0.05). GH treatment further reduced the weight of the fetal kidneys (32%) and small intestine (35%; both P<0.04), but restored the relative weight of the fetal thymus and liver (P<0.05). Embolisation decreased fetal plasma IGF-I concentrations (48%, P<0.001) and increased IGF binding protein 1 (IGFBP-1) concentrations (737%, P<0.002). GH treatment restored fetal plasma IGF-I concentrations to control levels, while levels in IUGR+vehicle fetuses stayed low (P<0.05 vs control). IGFBP-1 and IGFBP-2 concentrations were about sevenfold lower in amniotic fluid than in fetal plasma, but amniotic and plasma concentrations were closely correlated (r=0.75, P<0.0001 and r=0.55 P<0.0001 respectively). Embolisation transiently decreased fetal blood oxygen content (40%, P<0.002), and increased blood lactate concentrations (213%, P<0.04). Both returned to pre-embolisation levels after embolisation stopped, but blood glucose concentrations declined steadily in IUGR+vehicle fetuses. GH treatment maintained fetal blood glucose concentrations at control levels. Our study shows that GH infusion to the IUGR fetal sheep restores fetal IGF-I levels but does not improve fetal growth, and further reduces the fetal kidney and intestine weights. Thus, fetal GH therapy does not seem a promising treatment stratagem for the IUGR fetus.


1991 ◽  
Vol 131 (3) ◽  
pp. 367-372 ◽  
Author(s):  
G. Gallo ◽  
M. de Marchis ◽  
A. Voci ◽  
E. Fugassa

ABSTRACT The effect of thyroid status on the expression of insulin-like growth factors-I and -II mRNAs in the liver of developing rats has been investigated. Northern blot analyses of the specific mRNA demonstrated the presence of four IGF-II mRNA species which were strongly expressed in fetal liver and progressively declined after birth, becoming undetectable after week 3. This decrease was markedly delayed in the liver of hypothyroid rats. In addition, expression of IGF-I mRNA, absent in fetal liver, began during week 1 after birth and progressively increased with age. This increase was markedly delayed in the liver of hypothyroid rats. The data suggest that thyroid hormones regulate rat development via the co-ordinate expression of hepatic IGF-II and IGF-I mRNAs. Journal of Endocrinology (1991) 131, 367–372


1992 ◽  
Vol 263 (6) ◽  
pp. E1151-E1156 ◽  
Author(s):  
H. S. Iwamoto ◽  
M. A. Murray ◽  
S. D. Chernausek

It has been proposed that insulin-like growth factor I (IGF-I) regulates fetal growth and differentiation. Plasma IGF-I concentrations correlate positively with fetal nutrient availability and newborn birth weights. To explore the hypothesis that hypoxemia decreases fetal growth by decreasing fetal IGF-I availability, we instrumented 14 fetal sheep with vascular catheters. At least 4 days after surgery, 10 fetuses were made acutely hypoxemic by infusing nitrogen into the maternal trachea for 3 h. Fetal blood oxyhemoglobin saturation decreased from 53 +/- 6 (SD) to 31 +/- 9%. Concomitantly, plasma IGF-I concentrations decreased from 91 +/- 11 to 67 +/- 10 ng/ml and IGF-I binding protein-1 concentration increased significantly, as assessed by ligand and Western blot analysis. Fetal IGF-I concentrations remained below control values throughout a subsequent recovery period (68 +/- 12 ng/ml at 6 h). In four control fetuses and in the ewes, plasma IGF-I concentrations were not significantly different from control values (97 +/- 18 and 181 +/- 18 ng/ml, respectively). These data support the hypothesis that decreases in fetal oxygen availability may decrease fetal growth by decreasing IGF-I production and availability.


1999 ◽  
Vol 161 (1) ◽  
pp. 153-165 ◽  
Author(s):  
DJ Hill ◽  
J Petrik ◽  
E Arany ◽  
TJ McDonald ◽  
TL Delovitch

Interleukin-1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) contribute to the initial stages of the autoimmune destruction of pancreatic beta cells. IL-1beta is released by activated macrophages resident within islets, and its cytotoxic actions include a stimulation of nitric oxide (NO) production and the initiation of apoptosis. Insulin-like growth factors (IGFs)-I and -II prevent apoptosis in non-islet tissues. This study investigated whether IGFs are cytoprotective for isolated islets of Langerhans from non-obese diabetic mice (NOD) mice exposed to cytokines. Pancreatic islets isolated from 5-6-week-old, pre-diabetic female NOD mice were cultured for 48 h before exposure to IL-1beta (1 ng/ml), TNF-alpha (5 ng/ml), IFN-gamma (5 ng/ml) or IGF-I or -II (100 ng/ml) for a further 48 h. The incidence of islet cell apoptosis was increased in the presence of each cytokine, but this was significantly reversed in the presence of IGF-I or -II (IL-1beta control 3.5+/-1.6%, IL-1beta 1 ng/ml 27.1+/-5.8%, IL-1beta+IGF-I 100 ng/ml 4.4+/-2.3%, P<0.05). The majority of apoptotic cells demonstrated immunoreactive glucose transporter 2 (GLUT-2), suggesting that they were beta cells. Islet cell viability was also assessed by trypan blue exclusion. Results suggested that apoptosis was the predominant cause of cell death following exposure to each of the cytokines. Co-incubation with either IGF-I or -II was protective against the cytotoxic effects of IL-1beta and TNF-alpha, but less so against the effect of IFN-gamma. Exposure to cytokines also reduced insulin release, and this was not reversed by incubation with IGFs. Immunohistochemistry showed that IGF-I was present in vivo in islets from pre-diabetic NOD mice which did not demonstrate insulitis, but not in islets with extensive immune infiltration. Similar results were seen for IGF-binding proteins (IGFBPs). These results suggest that IGFs protect pre-diabetic NOD mouse islets from the cytotoxic actions of IL-1beta, TNF-alpha and IFN-gamma by mechanisms which include a reduction in apoptosis.


1996 ◽  
Vol 150 (1) ◽  
pp. 121-127 ◽  
Author(s):  
C G Prosser ◽  
J Schwander

Abstract Plasma clearance of insulin-like growth factors-I and -II (IGF-I and -II) and insulin-like growth factor-binding protein-2 (IGFBP-2) from lactating goats (n=4) was determined following a single intravenous injection of the corresponding 125I-labelled human protein. Transfer of these proteins out of the vascular space was monitored by their subsequent appearance in mammary-derived lymph and milk. Clearance of 125I-IGFBP-2 from circulation was 0·37 ± 0·06 ml/min/kg, which is markedly greater than that of 125I-IGF-I or -II (0·11 ± and 0·12 ± 0·01 ml/min/kg respectively). This was also reflected in longer elimination half-lives for IGF-I (353 ± 6 min) and -II (254 ± 8 min) compared with IGFBP-2 (110 ± 9 min). Three hours after injection of the 125I-labelled protein, the plasma:lymph ratio of trichloroacetic acid-precipitable radioactivity was 1·54 ±0·04, 3·3 ±0·6 and 4·1 ±0·4 for IGFBP-2, IGF-I and -II respectively. The form of 125I-IGFBP-2 in lymph was not different from that of plasma. Elevation of plasma concentrations of IGFBP-2 by its intravenous infusion significantly decreased plasma half-life of both IGF-I and -II (251 ± 8 and 198 ±7 min respectively). Although the amount and rate of transfer of IGF into mammary-derived lymph was decreased slightly by IGFBP-2, concentrations eventually obtained were not different from control. However, secretion of IGFs into milk was significantly reduced by IGFBP-2, particularly in the case of IGF-I. These results are consistent with the ability of all three compounds to cross the vascular endothelium intact and of IGFBP-2 to decrease the uptake of IGF by mammary epithelium and subsequent secretion into milk. IGFBP-2 may well have acted to target plasma IGF towards non-mammary tissues, thus explaining the more rapid plasma clearance of IGFs in the presence of elevated IGFBP-2. Journal of Endocrinology (1996) 150, 121–127


Sign in / Sign up

Export Citation Format

Share Document