scholarly journals Possible Relations between the Secretory Cycle of the Neurosecretory Cells in the Rat Paraventricular Nucleus and the Estrous Cycle

1978 ◽  
Vol 41 (5) ◽  
pp. 471-482 ◽  
Author(s):  
Yasue YUKITAKE
2000 ◽  
Vol 84 (4) ◽  
pp. 1814-1825 ◽  
Author(s):  
Jason A. Luther ◽  
Katalin Cs. Halmos ◽  
Jeffrey G. Tasker

Type I putative magnocellular neurosecretory cells of the hypothalamic paraventricular nucleus (PVN) express a prominent transient outward rectification generated by an A-type potassium current. Described here is a slow transient outward current that alters cell excitability and firing frequency in a subset of type I PVN neurons (38%). Unlike most of the type I neurons (62%), the transient outward current in these cells was composed of two kinetically separable current components, a fast activating, fast inactivating component, resembling an A-type potassium current, and a slowly activating [10–90% rise time: 20.4 ± 12.8 (SE) ms], slowly inactivating component (time constant of inactivation: τ = 239.0 ± 66.1 ms). The voltage dependence of activation and inactivation and the sensitivity to block by 4-aminopyridine (5 mM) and tetraethylammonium chloride (10 mM) of the fast and slow components were similar. Compared to the other type I neurons, the neurons that expressed the slow transient outward current were less excitable when hyperpolarized, requiring larger current injections to elicit an action potential (58.5 ± 13.2 vs. 15.4 ± 2.4 pA; 250-ms duration; P < 0.01), displaying a longer delay to the first spike (184.9 ± 15.7 vs. 89.7 ± 8.8 ms with 250- to 1,000-ms, 50-pA current pulses; P < 0.01), and firing at a lower frequency (18.7 ± 4.6 vs. 37.0 ± 5.5 Hz with 100-pA current injections; P < 0.05). These data suggest that a distinct subset of type I PVN neurons express a novel slow transient outward current that leads to a lower excitability. Based on double labeling following retrograde transport of systemically administered fluoro-gold and intracellular injection of biocytin, these cells are neurosecretory and are similar morphologically to magnocellular neurosecretory cells, although it remains to be determined whether they are magnocellular neurons.


1995 ◽  
Vol 133 (3) ◽  
pp. 354-360 ◽  
Author(s):  
Rosa Maria Uribe ◽  
Patricia Joseph-Bravo ◽  
Jean-Louis Charli

Uribe RM, Joseph-Bravo P, Charli J-L. Pups removal enhances thyrotropin-releasing hormone mRNA in the hypothalamic paraventricular nucleus. Eur J Endocrinol 1–60. ISSN 0804–4643 Previous studies have shown that lactation and suckling alter thyrotropin-releasing hormone (TRH) biosynthesis in hypothalamic paraventricular neurons. The amounts of paraventricular TRH mRNA and mediobasal hypothalamus (MBH) TRH were determined following removal of the pups to examine whether paraventricular TRH neuron activity is altered during the transition from lactation to estrous cycle. Paraventricular TRH mRNA and MBH TRH levels were determined by Northern blot analysis and radioimmunoassay, respectively. We had shown previously that after an 8-h withdrawal of the pups at mid-lactation the MBH TRH and paraventricular TRH mRNA levels are not modified. This condition was compared to one where pups were removed for 56 h, finding a significant decrease (46%, p < 0.005) of MBH TRH and a significant increase (156%, p < 0.02) of paraventricular TRH mRNA. The effect observed in the paraventricular TRH mRNA was correlated negatively with the serum corticosterone levels, a potential negative regulator of paraventricular TRH mRNA. The results were similar if a 1-h suckling period was introduced 8 h after withdrawal of the pups to induce a transient increase of corticosterone levels. The pattern of TRH mRNA was specific to the paraventricular nucleus because there was no enhancement in the preoptic area-anterior hypothalamus. In summary, our data suggest that TRH biosynthesis in paraventricular neurons is slowly adjusted after withdrawal of the pups, possibly to prepare TRH neurons to the new secretory demands of the estrous cycle. JL Charli, Instituto de Biotecnologia, UNAM, AP 510-3, Cuernavaca, Mor. 62271, México


Life Sciences ◽  
1986 ◽  
Vol 38 (25) ◽  
pp. 2311-2318 ◽  
Author(s):  
E. Rosalie Greer ◽  
Jack D. Caldwell ◽  
Michael F. Johnson ◽  
Arthur J. Prange ◽  
Cort A. Pedersen

2017 ◽  
Vol 230 (6) ◽  
pp. 775-786 ◽  
Author(s):  
Marilena Marraudino ◽  
Dèsirèe Miceli ◽  
Alice Farinetti ◽  
Giovanna Ponti ◽  
GianCarlo Panzica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document