chronic alcohol consumption
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 52)

H-INDEX

40
(FIVE YEARS 3)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261675
Author(s):  
Afroza Ferdouse ◽  
Rishi R. Agrawal ◽  
Madeleine A. Gao ◽  
Hongfeng Jiang ◽  
William S. Blaner ◽  
...  

Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.


2022 ◽  
pp. 1-17
Author(s):  
Mingjing Liu ◽  
Shipeng Guo ◽  
Daochao Huang ◽  
Dongjie Hu ◽  
Yili Wu ◽  
...  

Background: Chronic alcohol consumption can alter the structure of the central nervous system and disrupt cognitive function. Alcoholics are more likely to develop neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the role of alcohol in promoting neurotoxicity and neurodegeneration remains unclear. Objective: In this study, we aimed at estimating the effects of chronic binge alcohol exposure on brain transcriptome and behavior changes in a chronic “Drinking in the Dark” (DID) mouse model. Methods: The adult C57BL/6J male mice were exposed to alcohol for 4 weeks. RNA-seq was applied to assess the effects of chronic alcohol exposure on transcriptome in brain. The open field test and novel object recognition test were used to assess the changes of anxiety level, locomotive function, and short-term memory induced by alcohol. RNA-seq analysis revealed that chronic alcohol exposure caused significant change in the brain transcriptome, especially in prefrontal cortex. Results: The gene dysregulation caused by chronic alcohol exposure includes pathways related to mitochondrial energy metabolism (such as oxidative phosphorylation) and multiple neurodegenerative diseases (such as AD and PD). Furthermore, the pathway and network analyses suggest that the genes involved in mitochondrial energy metabolism, ubiquitin-proteasome system, Wnt signaling pathway, and microtubules may attribute to the neurotoxicity and neurodegeneration caused by chronic alcohol consumption. Additionally, locomotive function was also significantly impaired. Conclusion: This work provides gene transcriptional profile data for future research on alcohol-induced neurodegenerative diseases, especially AD and PD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiyu Li ◽  
Chun Li ◽  
Ethyn G. Loreno ◽  
Sumitra Miriyala ◽  
Manikandan Panchatcharam ◽  
...  

Chronic alcohol consumption dose-dependently affects the incidence and prognosis of ischemic stroke. We determined the influence of chronic alcohol consumption on cerebral angiogenesis under physiological conditions and following ischemic stroke. In in vitro studies, acute exposure to low-concentration ethanol significantly increased angiogenic capability and upregulated vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) in C57BL/6J mouse brain microvascular endothelial cells (MBMVECs). The increased angiogenic capability was abolished in the presence of a VEGFR2 inhibitor. In addition, the increased angiogenic capability and upregulated VEGF-A and VEGFR2 remained in chronically low-concentration ethanol-exposed MBMVECs. In in vivo studies, 8-week gavage feeding with low-dose ethanol significantly increased vessel density and vessel branches and upregulated VEGF-A and VEGFR2 in the cerebral cortex under physiological conditions. Furthermore, vessel density, vessel branches, and expression of VEGF-A and VEGFR2 in the peri-infarct cortex were significantly greater in low-dose ethanol-fed mice at 72 h of reperfusion. Although low-dose ethanol did not alter cerebral vasoreactivity and regional cerebral blood flow (rCBF) either before or during ischemia, it significantly augmented post-ischemic hyperemia during reperfusion. In contrast, exposure to high-concentration ethanol and 8-week gavage feeding with high-dose ethanol only had a mild inhibitory effect on angiogenic capability and cerebral angiogenesis, respectively. We conclude that heavy alcohol consumption may not dramatically alter cerebral angiogenesis, whereas light alcohol consumption significantly promotes cerebral angiogenesis.


2021 ◽  
Author(s):  
Tengfei Ma ◽  
Zhenbo Huang ◽  
Xueyi Xie ◽  
Xiaowen Zhuang ◽  
Matthew Childs ◽  
...  

Exposure to addictive substances impairs flexible decision-making. Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs). However, how chronic alcohol drinking alters cognitive flexibility through CINs remains unclear. Here, we report that chronic alcohol consumption and withdrawal impaired reversal of instrumental learning. Chronic alcohol consumption and withdrawal also caused a long-lasting (21 d) reduction of excitatory thalamic inputs onto CINs and reduced pause response of CINs in the dorsomedial striatum (DMS). CINs are known to inhibit glutamatergic transmission in dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) but facilitate this transmission in D2-MSNs, which may contribute to flexible behavior. We discovered that chronic alcohol drinking impaired CIN-mediated inhibition in D1-MSNs and facilitation in D2-MSNs. Importantly, in vivo optogenetic induction of long-term potentiation of thalamostriatal transmission in DMS CINs rescued alcohol-induced reversal learning deficits. These results demonstrate that chronic alcohol drinking reduces thalamic excitation of DMS CINs, compromising their regulation of glutamatergic transmission in MSNs, which may contribute to alcohol-induced impairment of cognitive flexibility. These findings provide a neural mechanism underlying inflexible drinking in alcohol use disorder.


2021 ◽  
Author(s):  
Anders J Asp ◽  
Suelen Lucio Boschen ◽  
J Luis Lujan

Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S. alone. The effects of alcohol consumption are expected to increase significantly during the COVID-19 pandemic, with alcohol sales increased by approximately 54%, potentially exacerbating health concerns and risk-taking behaviors. Unfortunately, existing pharmacological and behavioral therapies for AUD have historically been associated with poor success rates, with approximately 40% of individuals relapsing within three years of treatment. Pre-clinical studies have shown that chronic alcohol consumption leads to significant changes in synaptic function within the dorsal medial striatum (DMS), one of the brain regions associated with AUD and responsible for mediating goal-directed behavior. Specifically, chronic alcohol consumption has been associated with hyperactivity of dopamine receptor 1 (D1) medium spiny neurons (MSN) and hypoactivity of dopamine receptor 2 (D1) MSNs within the DMS. Optogenetic, chemogenetic, and transgenic approaches have demonstrated that reducing the D1/D2 MSN signaling imbalance decreases alcohol self-administration in rodent models of AUD. However, these approaches cannot be studied clinically at this time. Here, we present an electrical stimulation alternative that uses ultra-low (<=1Hz) frequency (ULF) spike-timing dependent plasticity (STDP) to reduce DMS D1/D2 MSN signaling imbalances by stimulating D1-MSN afferents into the GPi and ACC glutamatergic projections to the DMS in a time-locked stimulation sequence. Our data suggest that GPi/ACC ULF-STDP selectively decreases DMS D1-MSN hyperactivity leading to reduced alcohol consumption without evoking undesired affective behaviors in a two-bottle choice mouse model of AUD.


Author(s):  
J. S. Dileep Kumar ◽  
Andrei Molotkov ◽  
Michael C. Salling ◽  
Patrick Carberry ◽  
Jaya Prabhakaran ◽  
...  

2021 ◽  
Vol 26 (1(48)) ◽  
pp. 105-114
Author(s):  
О. А. Makarenko ◽  
V. V. Kika ◽  
L. M. Mudrik

Introduction. Nowadays, it is unclear what the trigger for bone resorption under the influence of chronic alcohol consumption is. As the reactions of conversion of ethanol into acetic acid are accompanied by an increase in the production of reactive oxygen species, it can be assumed that the formation of oxidative stress with prolonged alcohol consumption occurs in bone tissue as well. Aim. Research of the effect of chronic administration of ethanol to females and males laboratory rats on indices of resorption, osteogenesis, the condition of the antioxidant-prooxidant system in bone tissue. Materials and Methods. 2-month old animals received from 5 % to 15 % of ethanol in their drinking water with gradual increase of the concentration. The lower jaws were segregated, and the degree of atrophy of the alveolar process was calculated. The activity of elastase, acidic (AcF) and alkaline phosphatase (AlF), superoxide dismutase (SOD), catalase, glutathione reductase and malonic dialdehyde (MDA) content were determined in the bone tissue homogenates. Results. Chronic alcohol consumption contributed to an increase in alveolar bone atrophy, increased activity of biochemical markers of bone resorption (elastase by 32.2 %, AcF – by 33.6 %), decreased osteogenesis (AlF activity by 32.4 %). Alcohol intoxication led to oxidative imbalance of bone tissue: a decrease in SOD activity by an average of 16.9 %, glutathione reductase activity by 36.2 %, increase in catalase activity by 35.9 % and an increase in MDA levels by 51.8 %. Conclusion. Chronic alcohol consumption stimulates atrophy of the alveolar process of the rat jaw, induces oxidative imbalance in bone tissue, which can be a trigger pathogenetic factor in further development of resorption pro-inflammatory processes in bone tissue and inhibition of bone formation.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2177
Author(s):  
Zhipeng Cao ◽  
Tianqi Wang ◽  
Wei Xia ◽  
Baoli Zhu ◽  
Meihui Tian ◽  
...  

Chronic alcohol consumption leads to myocardial injury, ventricle dilation, and cardiac dysfunction, which is defined as alcoholic cardiomyopathy (ACM). To explore the induced myocardial injury and underlying mechanism of ACM, the Liber-DeCarli liquid diet was used to establish an animal model of ACM and histopathology, echocardiography, molecular biology, and metabolomics were employed. Hematoxylin-eosin and Masson’s trichrome staining revealed disordered myocardial structure and local fibrosis in the ACM group. Echocardiography revealed thinning wall and dilation of the left ventricle and decreased cardiac function in the ACM group, with increased serum levels of brain natriuretic peptide (BNP) and expression of myocardial BNP mRNA measured through enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR), respectively. Through metabolomic analysis of myocardium specimens, 297 differentially expressed metabolites were identified which were involved in KEGG pathways related to the biosynthesis of unsaturated fatty acids, vitamin digestion and absorption, oxidative phosphorylation, pentose phosphate, and purine and pyrimidine metabolism. The present study demonstrated chronic alcohol consumption caused disordered cardiomyocyte structure, thinning and dilation of the left ventricle, and decreased cardiac function. Metabolomic analysis of myocardium specimens and KEGG enrichment analysis further demonstrated that several differentially expressed metabolites and pathways were involved in the ACM group, which suggests potential causes of myocardial injury due to chronic alcohol exposure and provides insight for further research elucidating the underlying mechanisms of ACM.


Sign in / Sign up

Export Citation Format

Share Document