A Slow Transient Potassium Current Expressed in a Subset of Neurosecretory Neurons of the Hypothalamic Paraventricular Nucleus

2000 ◽  
Vol 84 (4) ◽  
pp. 1814-1825 ◽  
Author(s):  
Jason A. Luther ◽  
Katalin Cs. Halmos ◽  
Jeffrey G. Tasker

Type I putative magnocellular neurosecretory cells of the hypothalamic paraventricular nucleus (PVN) express a prominent transient outward rectification generated by an A-type potassium current. Described here is a slow transient outward current that alters cell excitability and firing frequency in a subset of type I PVN neurons (38%). Unlike most of the type I neurons (62%), the transient outward current in these cells was composed of two kinetically separable current components, a fast activating, fast inactivating component, resembling an A-type potassium current, and a slowly activating [10–90% rise time: 20.4 ± 12.8 (SE) ms], slowly inactivating component (time constant of inactivation: τ = 239.0 ± 66.1 ms). The voltage dependence of activation and inactivation and the sensitivity to block by 4-aminopyridine (5 mM) and tetraethylammonium chloride (10 mM) of the fast and slow components were similar. Compared to the other type I neurons, the neurons that expressed the slow transient outward current were less excitable when hyperpolarized, requiring larger current injections to elicit an action potential (58.5 ± 13.2 vs. 15.4 ± 2.4 pA; 250-ms duration; P < 0.01), displaying a longer delay to the first spike (184.9 ± 15.7 vs. 89.7 ± 8.8 ms with 250- to 1,000-ms, 50-pA current pulses; P < 0.01), and firing at a lower frequency (18.7 ± 4.6 vs. 37.0 ± 5.5 Hz with 100-pA current injections; P < 0.05). These data suggest that a distinct subset of type I PVN neurons express a novel slow transient outward current that leads to a lower excitability. Based on double labeling following retrograde transport of systemically administered fluoro-gold and intracellular injection of biocytin, these cells are neurosecretory and are similar morphologically to magnocellular neurosecretory cells, although it remains to be determined whether they are magnocellular neurons.

1994 ◽  
Vol 267 (5) ◽  
pp. H1984-H1995 ◽  
Author(s):  
A. C. Zygmunt

The contribution of chloride and potassium to the 4-aminopyridine (4-AP)-resistant transient outward current was investigated in dog cardiac myocytes. Whole cell currents were recorded at 37 degrees C in single cells dissociated from epicardial and midmyocardial regions of the canine ventricle. Sodium-calcium exchange current and voltage-dependent transient outward potassium current (IA) were blocked in sodium-free solutions containing 2 mM 4-AP; sodium channels were inactivated by the -50-mV holding potential. When patch pipettes contained 0.4–0.8 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, voltage-clamp steps over the range -20 to +50 mV activated an inward calcium current (ICa) and a Ca(2+)-activated chloride current [ICl(Ca)]. ICl(Ca) was blocked by 200 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), or reduction of external chloride. Independent of the presence of potassium, the reversal potential of the SITS-sensitive current varied with extracellular chloride, as predicted for a chloride-selective conductance. The bell-shaped current-voltage relation of ICl(Ca) has a threshold of -20 mV and a peak at +40 mV. No evidence could be found for a Ca(2+)-activated potassium current or a Ca(2+)-activated nonspecific cation current under these conditions. ICl(Ca) contributed to oscillatory inward currents at diastolic potentials in cells superfused by isoproterenol and high Ca2+, suggesting a role for this current in triggered arrhythmias associated with delayed afterdepolarizations. In the normal heart, ICl(Ca) is likely to contribute to rate- and rhythm-dependent repolarization of the cardiac action potential.


1986 ◽  
Vol 250 (2) ◽  
pp. H325-H329 ◽  
Author(s):  
R. D. Nathan

Previous investigations employing multicellular nodal preparations (i.e., mixtures of dominant and subsidiary pacemaker cells) have suggested that the fast transient inward sodium current (iNa) either is not present in dominant pacemaker cells or is present but inactivated at the depolarized take-off potentials that these cells exhibit. In the present study, this question was resolved by voltage clamp analysis of single pacemaker cells isolated from the sinoatrial node and maintained in vitro for 1-3 days. Two types of cells, each with a different morphology, exhibited two modes of electrophysiological behavior. Type I cells (presumably dominant pacemakers) displayed only a tetrodotoxin (TTX)-resistant (but cadmium-sensitive) slow inward current, whereas type II cells (presumably subsidiary pacemakers) exhibited two components of inward current, a TTX-sensitive, fast transient inward current and a TTX-resistant (but cadmium-sensitive) slow inward current. Three other voltage-gated currents, 1) a slowly developing inward current activated by hyperpolarization (if, ih, delta ip), 2) a transient outward current activated by strong depolarization (ito, iA), and 3) a delayed outward current, were recorded in both types of pacemaker cells.


1997 ◽  
Vol 273 (1) ◽  
pp. H1-H11 ◽  
Author(s):  
A. R. Yehia ◽  
A. Shrier ◽  
K. C. Lo ◽  
M. R. Guevara

Wenckebach-like rhythms in isolated rabbit ventricular cells are characterized by beat-to-beat increments in action potential duration (APD) and latency, giving rise to a beat-to-beat decrease in the recovery interval and culminating in a skipped beat. These systematic APD changes are associated with a beat-to-beat decrease in the slope of the early repolarizing phase (phase 1) of the action potential, which is partially controlled by the transient outward potassium current (Ito). When Ito is blocked with 4-aminopyridine, periodic Wenckebach rhythms are replaced by aperiodic Wenckebach rhythms, in which the beat-to-beat changes in the slope of phase 1 and in APD disappear but the beat-to-beat increase in latency remains. A beat-to-beat decrease in Ito, paralleling the beat-to-beat changes in the slope of phase 1 and in APD, is seen in action-potential clamp experiments with Wenckebach rhythms previously recorded in the same cell. Simulations with an ionic model of Ito show cyclical changes in Ito consistent with the experimental data. These results demonstrate a key role for Ito in the generation of maintained periodic Wenckebach rhythms in isolated rabbit ventricular cells.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3804-3814 ◽  
Author(s):  
Praful S. Singru ◽  
Gábor Wittmann ◽  
Erzsébet Farkas ◽  
Györgyi Zséli ◽  
Csaba Fekete ◽  
...  

We previously demonstrated that refeeding after a prolonged fast activates a subset of neurons in the ventral parvocellular subdivision of the paraventricular nucleus (PVNv) as a result of increased melanocortin signaling. To determine whether these neurons contribute to satiety by projecting to the nucleus tractus solitarius (NTS), the retrogradely transported marker substance, cholera toxin-β (CTB), was injected into the dorsal vagal complex of rats that were subsequently fasted and refed for 2 h. By double-labeling immunohistochemistry, CTB accumulation was found in the cytoplasm of the majority of refeeding-activated c-Fos neurons in the ventral parvocellular subdivision of the hypothalamic paraventricular nucleus (PVNv). In addition, a large number of refeeding-activated c-Fos-expressing neurons were observed in the lateral parvocellular subdivision (PVNl) that also contained CTB and were innervated by axon terminals of proopiomelanocortin neurons. To visualize the location of neuronal activation within the NTS by melanocortin-activated PVN neurons, α-MSH was focally injected into the PVN, resulting in an increased number of c-Fos-containing neurons in the PVN and in the NTS, primarily in the medial and commissural parts. All refeeding-activated neurons in the PVNv and PVNl expressed the mRNA of the glutamatergic marker, type 2 vesicular glutamate transporter (VGLUT2), indicating their glutamatergic phenotype, but only rare neurons contained oxytocin. These data suggest that melanocortin-activated neurons in the PVNv and PVNl may contribute to refeeding-induced satiety through effects on the NTS and may alter the sensitivity of NTS neurons to vagal satiety inputs via glutamate excitation.


2010 ◽  
Vol 103 (1) ◽  
pp. 4-15 ◽  
Author(s):  
Qing-Hui Chen ◽  
Glenn M. Toney

The hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) are key components of a neural network that generates and regulates sympathetic nerve activity (SNA). Although each region has been extensively studied, little is presently known about the in vivo discharge properties of individual PVN neurons that directly innervate the RVLM. Here extracellular recording was performed in anesthetized rats, and antidromic stimulation was used to identify single PVN neurons with axonal projections to the RVLM ( n = 94). Neurons were divided into two groups that had either unbranched axons terminating in the RVLM (i.e., PVN-RVLM neurons, n = 65) or collateralized axons targeting both the RVLM and spinal cord [i.e., PVN-RVLM/intermediolateral cell column (IML) neurons, n = 29]. Many PVN-RVLM (32/65, 49%) and PVN-RVLM/IML (17/29, 59%) neurons were spontaneously active. The average firing frequency was not different across groups. Spike-triggered averaging revealed that spontaneous discharge of most neurons was temporally correlated with renal SNA (PVN-RVLM: 12/21, 57%; PVN-RVLM/IML: 6/9, 67%). Time histograms triggered by the electrocardiogram (ECG) R-wave indicated that discharge of most cells was also cardiac rhythmic (PVN-RVLM: 25/32, 78%; PVN-RVLM/IML: 10/17, 59%). Raising and lowering arterial blood pressure to increase and decrease arterial baroreceptor input caused a corresponding decrease and increase in firing frequency among cells of both groups (PVN-RVLM: 9/13, 69%; PVN-RVLM/IML: 4/4, 100%). These results indicate that PVN-RVLM and PVN-RVLM/IML neurons are both capable of contributing to basal sympathetic activity and its baroreflex modulation.


Depolarization of follicle-enclosed oocytes of Xenopus laevis obtained from some donors elicits, in addition to other responses, a fast transient outward current. After holding the membrane potential at –100 mV this response begins to be activated by depolarizations to around –30 mV, and increases progressively as the voltage is raised further. A striking characteristic is that the current recovers only slowly (several seconds) from inactivation following a depolarizing pulse. Because of its outward direction and insensitivity to removal of extracellular chloride or addition of tetrodotoxin, the current probably arises largely through a flux of potassium ions. The current was abolished after treatment of oocytes with collagenase to remove enveloping cells, and although it was blocked by barium and zinc ions, tetraethylammonium was relatively ineffective. In addition, the potassium current was unaffected by 5 mM manganese, suggesting that it does not arise as a consequence of an influx of calcium into the oocyte.


Endocrinology ◽  
1998 ◽  
Vol 139 (9) ◽  
pp. 3830-3836 ◽  
Author(s):  
Susan M. Tanimura ◽  
Alan G. Watts

Abstract We have used in situ hybridization to investigate how basal levels of circulating corticosterone modulate CRH gene transcription in the neuroendocrine parvicellular part of the hypothalamic paraventricular nucleus (PVHmpd) during sustained hypovolemia. In the absence of the stressor, the accumulation rate of the CRH primary transcript exhibited a dose dependency on low maintained levels of plasma corticosterone similar to that previously reported for the mature messenger RNA (mRNA); levels declined as plasma corticosterone increased. In response to hypovolemia, the absence of corticosterone compromised CRH gene transcription mechanisms to mount the activated response seen in intact animals. However, adrenalectomized rats with low doses of corticosterone (insufficient to normalize thymus weights) showed an augmented mRNA response compared with that in intact animals. When replaced corticosterone normalized thymus weights, the magnitude of the mRNA response was reduced to that seen in intact animals. In contrast to CRH gene regulation, PVHmpd proenkephalin mRNA levels were unaffected by corticosterone concentrations. These results suggest that corticosterone affects CRH gene transcription in the PVHmpd using two mechanisms: first, inhibition, which probably uses type II glucocorticoid receptor-dependent mechanisms and contributes to classic negative feedback; and second, facilitation, which is seen at low plasma concentrations and maintains gene transcription in the presence of sustained stress, possibly using type I mechanisms. This suggests that one reason why adrenal insufficiency severely compromises survival of sustained stress is that CRH gene transcription cannot be maintained without previous exposure to low levels of plasma corticosterone.


Sign in / Sign up

Export Citation Format

Share Document