Pile-supported embankment over soft soil for a high-speed line

2017 ◽  
pp. 1-13 ◽  
Author(s):  
L. Briançon ◽  
B. Simon
2014 ◽  
Vol 587-589 ◽  
pp. 928-933 ◽  
Author(s):  
Feng Lian ◽  
Zhi Liu ◽  
Jie Xu ◽  
Qiang Wang ◽  
Xian Hu Hu ◽  
...  

Two experimental areas in a highway soft soil ground treatment project in Guangdong Province were designed to investigate the improvement mechanism of geogrid-reinforced and pile-supported embankment(GRPS).The experimental results showed: In End-bearing Pile Area,the differential settlement between pile and soil was bigger than that of Floating Pile Area,so the bearing capacity of soil was exerted to a certain extent in Floating Pile Area. The bearing efficacy of soil below the pile cap was little, so the replacement ratio of composite foundation could be calculated according to the pile cap dimension. The load transfer efficacy of the geogrid was better than that of the soil arch. Five kinds of methods were used to evaluate the soil arch in the fill and it was indicated that the results calculated by the BS8006 method and Carlsson method was close to the experimental data which was smaller than results calculated by Hewlett method and Terzaghi method, bigger than Guido method. Through the analysis of the pile-soil stress ratio, the improvement mechanism of the two types of GRPS were revealed.


2020 ◽  
Vol 28 (2) ◽  
pp. 129-145 ◽  
Author(s):  
Shunhua Zhou ◽  
Binglong Wang ◽  
Yao Shan

2015 ◽  
Vol 52 (12) ◽  
pp. 2041-2054 ◽  
Author(s):  
R. Kerry Rowe ◽  
K.-W. Liu

The performance of four sections of a full-scale embankment constructed on soft soil is examined using a fully coupled and fully three-dimensional finite element analysis. The four sections had similar embankment loadings but different improvement options (one unimproved, one with pile-support only, one with a single layer geotextile-reinforced platform and pile-support, and one with two layers of geogrid-reinforced platform and pile-support). Like the field data, the numerical results show that the inclusion of piles decreases the settlement at the subsoil surface to 52% of that for the unimproved section, and the addition of a single layer of geotextile reinforcement (J = 800 kN/m) further reduced settlement to only 31% of that of the unimproved section. The effects of geosynthetic reinforcement and multiple layers of reinforcement on the performance of the pile-supported embankment are discussed. The relative load transfer is calculated using eight existing methods and they are compared with the field measurements and numerical results.


2012 ◽  
Vol 178-181 ◽  
pp. 1605-1610
Author(s):  
Yu Jia ◽  
Long Cai Yang

The strict control standards for post-construction settlement of high-speed railway require high accuracy of settlement calculation. Harmonizing the contradiction that settlement calculation theory lags far behind the engineering practice, the computational method of additional stress of foundation urgently needs improvement. For Geosynthetic Reinforced Pile-Supported (GRPS) embankment, as the stress caused by the load acting on soil between piles is an essential part of the whole, the computed results of additional stress of foundation largely depend on the load magnitude and load distribution form of soil between piles. Starting with the mechanical behavior of GRPS embankment, this paper analyzes the classic assumptions of soil arch form and their computation theory of load acting on soil between piles, and then deduces the distribution function of parabolic load, which can provide basis for further research on calculating the additional stress.


Sign in / Sign up

Export Citation Format

Share Document