Effects of Silane Treatment on the Bond Between Steel Fibres and Mortar

2021 ◽  
pp. 1-37
Author(s):  
Hugh D. Miller ◽  
Ali Akbarnezhad ◽  
Sara Mesgari ◽  
Stephen J. Foster
Author(s):  
Hugh D. Miller ◽  
Ali Akbarnezhad ◽  
Stephen J. Foster ◽  
Sara Mesgari ◽  
Ali Amin

10.1617/13472 ◽  
2005 ◽  
Vol 35 (251) ◽  
Author(s):  
P. Robins
Keyword(s):  

2021 ◽  
pp. 1-12
Author(s):  
M. Ramesh ◽  
L. Rajeshkumar ◽  
C. Deepa ◽  
M. Tamil Selvan ◽  
Vinod Kushvaha ◽  
...  

Author(s):  
Fuat Köksal ◽  
Kuppala Srinivasa Rao ◽  
Ziyafeddin Babayev ◽  
Mehmet Kaya

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4102
Author(s):  
Jan Stindt ◽  
Patrick Forman ◽  
Peter Mark

Resource-efficient precast concrete elements can be produced using high-performance concrete (HPC). A heat treatment accelerates hardening and thus enables early stripping. To minimise damages to the concrete structure, treatment time and temperature are regulated. This leads to temperature treatment times of more than 24 h, what seems too long for quick serial production (flow production) of HPC. To overcome this shortcoming and to accelerate production speed, the heat treatment is started here immediately after concreting. This in turn influences the shrinkage behaviour and the concrete strength. Therefore, shrinkage is investigated on prisms made from HPC with and without steel fibres, as well as on short beams with reinforcement ratios of 1.8% and 3.1%. Furthermore, the flexural and compressive strengths of the prisms are measured directly after heating and later on after 28 d. The specimens are heat-treated between 1 and 24 h at 80 °C and a relative humidity of 60%. Specimens without heating serve for reference. The results show that the shrinkage strain is pronouncedly reduced with increasing temperature duration and rebar ratio. Moreover, the compressive and flexural strength decrease with decreasing temperature duration, whereby the loss of strength can be compensated by adding steel fibres.


2016 ◽  
Vol 51 (14) ◽  
pp. 2009-2021 ◽  
Author(s):  
Mustafa Bakkal ◽  
M Safa Bodur ◽  
H Ece Sonmez ◽  
B Can Ekim

In this study, weathering effect on untreated textile fiber-reinforced polymer composites and the effect of different chemical treatments for better interfacial adhesion on the outdoor performance were investigated. Degradation of physical, mechanical, and chemical properties of textile fiber-reinforced polymer composites was evaluated through common chemical treatments such as maleated coupling, alkaline treatment, silane treatment, and alkali–silane treatment. Untreated and chemically treated textile fiber-reinforced polymer composites were subjected to water uptake and UV exposure up to 1000 h. Tensile and impact properties were mechanically examined, and the changes on the physical properties due to water uptake, swelling, and color change were investigated. In addition, Fourier transform infrared spectrum analysis was performed in order to evaluate the chemical changes after exposure.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3835-3847
Author(s):  
K.I. Christidis ◽  
E.G. Badogiannis ◽  
C. Mintzoli

Sign in / Sign up

Export Citation Format

Share Document