13. Feedheating plant for wet steam cycles

Author(s):  
C. J. Monks
Keyword(s):  
1992 ◽  
Vol 2 (4) ◽  
pp. 645-656 ◽  
Author(s):  
W. Bosschaerts ◽  
R. Decuypere
Keyword(s):  

2021 ◽  
Vol 189 ◽  
pp. 116748
Author(s):  
Chuang Wen ◽  
Yan Yang ◽  
Hongbing Ding ◽  
Chunqian Sun ◽  
Yuying Yan

Author(s):  
Hengrui Liu ◽  
Ivan Miguel De Cachinho Cordeiro ◽  
Anthony Chun Yin Yuen ◽  
Cheng Wang ◽  
Ao Li ◽  
...  

Author(s):  
G. J. Parker ◽  
E. Bruen

This paper describes an investigation into the behaviour of drops which impinge upon dry and wet surfaces. This is of particular interest in the context of the wet steam turbine. Two approaches have been made in the studies; these are: (1) Drops were made to impinge normally on to various types of dry, stationary surfaces. The drops were in the size range 300–1500 μm diameter with velocities of 2–9 m/s. (2) Drops were made to impinge on to surfaces moving with considerable velocity at right angles to the motion of the drop. Surface velocities ranged up to 45 m/s. The latter study is of direct interest for the splashing of drops on turbine casings at small glancing angles, as occurs near drainage belts. Analysis of the mechanisms involved is made from the records of high-speed ciné photography.


2002 ◽  
Vol 216 (1-3) ◽  
pp. 113-119 ◽  
Author(s):  
Wageeh Sidrak Bassel ◽  
Arivaldo Vicente Gomes

2016 ◽  
Vol 27 (12) ◽  
pp. 125901
Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I Kalfas ◽  
Reza S Abhari

1976 ◽  
Vol 98 (3) ◽  
pp. 573-577 ◽  
Author(s):  
J. Krzyz˙anowski ◽  
B. Weigle

In a series of experiments aimed at the visualization of the wet steam flow in the exhaust part of a 200 MW condensing steam turbine a set of periscopes and light sources was used. The aim of the experiment was: 1 – The investigation of the liquid-phase flow over the last stage stator blading of the turbine mentioned. 2 – The investigation of the gaseous-phase flow through the last stage blading at full and part load. The first part of the program partially failed due to the opaqueness of the wet steam atmosphere for the turbine load higher than 10–20 MW. The detailed experimental conditions will be described. An assessment of the primary droplet size will also be given. The preliminary results of the second part of the program will be outlined. The advantages and disadvantages of the equipment used will be discussed.


Author(s):  
F Bakhtar ◽  
H Mashmoushy ◽  
O C Jadayel

During the course of expansion of steam in turbines the fluid first supercools and then nucleates to become a two-phase mixture. The liquid phase consists of a large number of extremely small droplets which are difficult to generate except by nucleation. To reproduce turbine two-phase flow conditions requires a supply of supercooled vapour which can be achieved under blow-down conditions by the equipment employed. This paper is the third of a set describing an investigation into the performance of a cascade of rotor tip section profiles in wet steam and presents the results of the wake traverses.


Author(s):  
Tim Wittmann ◽  
Christoph Bode ◽  
Jens Friedrichs

Abstract This study investigates the applicability of an Euler-Lagrange approach for the calculation of nucleation and condensation of steam flows. Supersonic nozzles are used as generic validation cases, as their high expansion rates replicate the flow conditions in real turbines. Experimental and numerical validation data for these nozzles are provided by the International Wet Steam Modelling Project of Starzmann et al. (2018). In contrast to most participants of that project, an Euler-Lagrange approach is utilized for this study. Therefore, the classical nucleation theory with corrections and different droplet growth laws is incorporated into the Discrete Phase Model of ANSYS Fluent. Suggestions for an efficient implementation are presented. The Euler-Lagrange results show a good agreement with the experimental and numerical validation data. The sensitivities of the Euler-Lagrange approach to modelling parameters are analysed. Finally, an optimal parameter set for the calculation of nucleation and condensation is proposed.


Sign in / Sign up

Export Citation Format

Share Document