scholarly journals Immunolocalization of Multispecific Organic Anion Transporters, OAT1, OAT2, and OAT3, in Rat Kidney

2002 ◽  
Vol 13 (4) ◽  
pp. 848-857 ◽  
Author(s):  
Ryoji Kojima ◽  
Takashi Sekine ◽  
Masanao Kawachi ◽  
Seok Ho Cha ◽  
Yoshio Suzuki ◽  
...  

ABSTRACT. Recently, a family of multispecific organic anion transporters has been identified, and several isoforms have been reported. However, the physiologic and pharmacologic roles of each isoform, except OAT1, in the transepithelial transport of organic anions in the kidney remain to be elucidated. To address this issue, it is essential to determine the intrarenal distribution and membrane localization of each OAT isoform along the nephron. In this study, the intrarenal distributions of rOAT1, rOAT2, and rOAT3 were investigated by an immunofluorescence method that used frozen rat serial kidney sections. Confocal microscopic analysis showed that immunoreactivity for rOAT1 was detected exclusively in the proximal tubules (S1, S2, S3) in the cortex with basolateral membrane staining. rOAT2 was detected in the apical surface of the tubules in the medullary thick ascending limb of Henle’s loop (MTAL) and cortical and medullary collecting ducts (CD). rOAT3 was localized in the basolateral digitation of the cell membrane in all the segments (S1, S2, and S3) of the proximal tubules, MTAL, cortical TAL, connecting tubules, and cortical and medullary CD. These results on the distribution of each OAT isoform will facilitate the understanding of the role of OATs in the renal processing of organic anions.

2006 ◽  
Vol 290 (2) ◽  
pp. F251-F261 ◽  
Author(s):  
Takashi Sekine ◽  
Hiroki Miyazaki ◽  
Hitoshi Endou

Recent advances in molecular biology have identified three organic anion transporter families: the organic anion transporter (OAT) family encoded by SLC22A, the organic anion transporting peptide (OATP) family encoded by SLC21A ( SLCO), and the multidrug resistance-associated protein (MRP) family encoded by ABCC. These families play critical roles in the transepithelial transport of organic anions in the kidneys as well as in other tissues such as the liver and brain. Among these families, the OAT family plays the central role in renal organic anion transport. Knowledge of these three families at the molecular level, such as substrate selectivity, tissue distribution, and gene localization, is rapidly increasing. In this review, we will give an overview of molecular information on renal organic anion transporters and describe recent topics such as the regulatory mechanisms and molecular physiology of urate transport. We will also discuss the physiological roles of each organic anion transporter in the light of the transepithelial transport of organic anions in the kidneys.


1999 ◽  
Vol 10 (3) ◽  
pp. 464-471 ◽  
Author(s):  
AKIHIRO TOJO ◽  
TAKASHI SEKINE ◽  
NORIKO NAKAJIMA ◽  
MAKOTO HOSOYAMADA ◽  
YOSHIKATSU KANAI ◽  
...  

Abstract. Renal proximal convoluted tubules have an important role, i.e., to excrete organic anions, including numerous drugs and endogenous substances. Recently, multispecific organic anion transporter 1 (OAT1) was isolated from rat kidney. In this study, the cellular and subcellular localization of OAT1 in rat kidney was investigated. Kidneys from normal rats were perfused and fixed with periodate-lysine-paraformaldehyde solution and were then processed for immunohistochemical analysis using the labeled streptavidin-biotin method, preembedding horseradish peroxidase method, and immunogold method. Light microscopic examination revealed immunostaining for OAT1 in the middle portion of the proximal tubule (S2 segment), but not in the initial portion of the proximal convoluted tubule, next to the glomerulus. Nephron segments other than the S2 segment and the renal vasculature were not stained with antibody to OAT1. Electron-microscopic observation using a preembedding method revealed that OAT1 was exclusively expressed in the basolateral membrane of S2 segments of proximal tubules. The immunogold method showed no labeling for OAT1 in the cytoplasmic vesicles, suggesting that OAT1 may not move together with organic anions into the cells. These results are consistent with previous physiologic data showing that organic anions, including para-aminohippurate, are taken up by the basolateral Na+-independent organic anion/dicarboxylate exchanger and excreted at S2 segments. In conclusion, OAT1 was localized to the basolateral membrane of S2 segments of proximal tubules in rat kidneys.


2007 ◽  
Vol 292 (5) ◽  
pp. F1599-F1605 ◽  
Author(s):  
R. Schneider ◽  
C. Sauvant ◽  
B. Betz ◽  
M. Otremba ◽  
D. Fischer ◽  
...  

Ischemic acute renal failure (iARF) was described to reduce renal extraction of the organic anion para-aminohippurate (PAH) in humans. The rate-limiting step of renal organic anion secretion is its basolateral uptake into proximal tubular cells. This process is mediated by the organic anion transporters OAT1 and OAT3, which both have a broad spectrum of substrates including a variety of pharmaceutics and toxins. Using a rat model of iARF, we investigated whether impairing the secretion of the organic anion PAH might be associated with downregulation of OAT1 or OAT3. Inulin and PAH clearance was determined starting from 6 up to 336 h after ischemia-reperfusion (I/R) injury. Net secretion of PAH was calculated and OAT1 as well as OAT3 expression was analyzed by RT-PCR and Western blotting. Inulin and PAH clearance along with PAH net secretion were initially diminished after I/R injury with a gradual recovery during follow-up. This initial impairment after iARF was accompanied by decreased mRNA and protein levels of OAT1 and OAT3 in clamped animals compared with sham-operated controls. In correlation to the improvement of kidney function, both mRNA and protein levels of OAT1 and OAT3 were upregulated during the follow-up. Thus decreased expression of OAT1 and OAT3 is sufficient to explain the decline of PAH secretion after iARF. As a result, this may have substantial impact on excretion kinetics and half-life of organic anions. As a consequence, the biological effects of a variety of organic anions may be affected after iARF.


The Liver ◽  
2009 ◽  
pp. 305-321 ◽  
Author(s):  
Jo H. Choi ◽  
John W. Murray ◽  
Allan W. Wolkoff

2007 ◽  
Vol 71 (6) ◽  
pp. 539-547 ◽  
Author(s):  
T. Matsuzaki ◽  
H. Watanabe ◽  
K. Yoshitome ◽  
T. Morisaki ◽  
A. Hamada ◽  
...  

2009 ◽  
Vol 60 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Hrvoje Brzica ◽  
Davorka Breljak ◽  
Marija Ljubojević ◽  
Daniela Balen ◽  
Vedran Micek ◽  
...  

Optimal Methods of Antigen Retrieval for Organic Anion Transporters in Cryosections of the Rat KidneyTo localise antigens by immunocytochemistry (IC), the samples of tissues or cells are usually denatured by fixation, and either frozen and cryosectioned, or embedded in paraffin before sectioning. p-Formaldehyde (PFA; formalin) is a common fixative, which preserves antigenicity of proteins, but damages the tissue/cell morphology and "masks" the antibody binding sites (epitopes). In order to "unmask" epitopes, some kind of antigen retrieval (AR) is used. The aim of this study was: a) to find an optimal AR method in cryosections of in vivo PFA-fixed kidneys for organic anion transporters (Oat) that reside in the basolateral (Oat1, Oat3) and brush-border membrane (Oat2, Oat5) of the rat renal proximal tubules, and b) using optimal method, to compare IC staining of Oats in kidneys that had been PFA-fixed in vivo or in vitro. IC staining in untreated cryosections was compared with that following detergent treatment or microwave heating in citrate buffer of pH 3, pH 6, or pH 8, with or without alcohol pre-treatment. The preferred AR method for Oat1, Oat2, and Oat5 was heating of cryosections at pH 6, and for Oat3 heating at pH 3, without alcohol pre-treatment. Compared with tissue fixed in vivo, tissue fixed in vitro exhibited damaged tubule morphology, similar staining intensity of Oat1 and Oat3, and higher staining intensity of Oat2 and Oat5. We conclude that for optimal IC presentation, each Oat in the rat kidney has to be treated individually, with different fixation and AR approach.


2005 ◽  
Vol 94 (1) ◽  
pp. 441-453 ◽  
Author(s):  
Dorothee Günzel ◽  
Karin Hintz ◽  
Simone Durry ◽  
Wolf-Rüdiger Schlue

Mg2+-extrusion from Mg2+-loaded neurons of the leech, Hirudo medicinalis, is mediated mainly by Na+/Mg2+ antiport. However, in a number of leech neurons, Mg2+ is extruded in the nominal absence of extracellular Na+, indicating the existence of an additional, Na+-independent Mg2+ transport mechanism. This mechanism was investigated using electrophysiological and microfluorimetrical techniques. The rate of Na+-independent Mg2+ extrusion from Mg2+-loaded leech neurons was found to be independent of extracellular Ca2+, K+, NO3−, HCO3−, SO42−, HPO42−, and of intra- and extracellular pH. Na+-independent Mg2+ extrusion was not inhibited by 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), furosemide, ouabain, vanadate, iodoacetate, 4-amino-hippurate, or α-cyano-4-hydroxycinnamate and was not influenced by changes in the membrane potential in voltage-clamp experiments. Na+-independent Mg2+ extrusion was, however, inhibited by the application of 2 mM probenecid, a blocker of organic anion transporters, suggesting that Mg2+ might be co-transported with organic anions. Extracellularly, of all organic anions tested (malate, citrate, lactate, α-ketoglutarate, and 4-amino-hippurate) only high, but physiological, concentrations of malate (30 mM) had a significant inhibitory effect on Na+-independent Mg2+ extrusion. Intracellularly, iontophoretically injected malate, citrate, or fura-2, but not Cl−, α-ketoglutarate, glutamate, succinate, or urate, were stimulating Na+-independent Mg2+ extrusion from those neurons that initially did not extrude Mg2+ in Na+-free solutions. Our data indicate that Mg2+ is co-transported with organic anions, preferably with malate, the predominant extracellular anion in the leech. The proposed model implies that, under experimental conditions, malate drives Mg2+ extrusion, whereas under physiological conditions, malate is actively taken up, driven by Mg2+, so that malate can be metabolized.


Sign in / Sign up

Export Citation Format

Share Document