scholarly journals Regulation of taurine transporter activity in LLC-PK1 cells: role of protein synthesis and protein kinase C activation.

1991 ◽  
Vol 2 (5) ◽  
pp. 1021-1029 ◽  
Author(s):  
D P Jones ◽  
L A Miller ◽  
C Dowling ◽  
R W Chesney

Taurine transporter activity increases after exposure of cultured renal epithelial cells to taurine-free medium for 24 h and decreases after incubation in high (500 microM) taurine. This adaptive response mimics that observed in rat kidney after manipulation of dietary taurine. In order to elucidate potential mechanisms involved in the regulation of beta-amino acid transporter activity, the role of RNA transcription, protein synthesis, and protein import (trafficking), as well as protein kinase C activation, on the control of taurine transport was examined in the continuous proximally derived LLC-PK1 renal cell line. Inhibition of RNA transcription with actinomycin D did not alter the up-regulatory and down-regulatory adaptive responses. Inhibition of protein synthesis with cycloheximide prevented the increased taurine transport in response to taurine-free medium as well as the decrease in taurine transport after exposure to high taurine. Colchicine prevented the response to taurine-free medium but had no effect on the response to high-taurine medium. Exposure of confluent cell monolayers to the active phorbol esters, phorbol 12-myristate 13-acetate and phorbol 12,13 dibutyrate, resulted in a reduction in taurine uptake. The effect was seen within minutes of exposure but was not observed in the presence of the inactive phorbol 4-alpha. This inhibitory action was blocked by staurosporin, an inhibitor of protein kinase C (PKC). Treatment of cells with the diacylglycerol kinase inhibitor R59022, which results in increased intracellular diacylglycerol, a natural stimulant of PKC, also inhibited taurine uptake, providing further evidence for a specific effect of PKC activation.(ABSTRACT TRUNCATED AT 250 WORDS)

1991 ◽  
Vol 55 (11) ◽  
pp. 1149-1157 ◽  
Author(s):  
ISSEI KOMURO ◽  
YOUICHI KATOH ◽  
EITETSU HOH ◽  
FUMIMARO TAKAKU ◽  
YOSHIO YAZAKI

1990 ◽  
Vol 64 (01) ◽  
pp. 165-171 ◽  
Author(s):  
Yukio Ozaki ◽  
Yuki Mastsumoto ◽  
Yutaka Yatomi ◽  
Masaaki Higashihara

SummaryProtein kinase C activation in human platelets has a modulatory role in maintaining intracellular pH (pHi), by adjusting pHi at a particular value (7.22). Changes in pHi induced by protein kinase C appeared to be dependent upon the difference between H+ efflux catalyzed by the Na+/H+ exchanger and H+ production. The pHi recovery after acid loading was significantly facilitated by protein kinase C activation. Analysis of the rate constant for pHi recovery suggested that the turnover rate or the apparent affinity of the Na+/H+ exchanger for H+ was increased. Protein kinase C also decreased the Km value of the Na+/H+ exchanger for extracellular Na+. Thus, it is suggested that the role of protein kinase C in platelet pHi regulation is dual, adjusting the pHi value at a certain setpoint on the one hand, and increasing the rate constant of the Na+/H+ exchanger on the other.


1988 ◽  
Vol 154 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Naofumi Mukaida ◽  
Hitoshi Yagisawa ◽  
Tadashi Kawai ◽  
Tadashi Kasahara

Sign in / Sign up

Export Citation Format

Share Document