scholarly journals Estimation of a focused object using a corneal surface image for eye-based interaction

2014 ◽  
Vol 7 (3) ◽  
Author(s):  
Kentaro Takemura ◽  
Tomohisa Yamakawa ◽  
Jun Takamatsu ◽  
Tsukasa Ogasawara

Researchers are considering the use of eye tracking in head-mounted camera systems, such as Google’s Project Glass. Typical methods require detailed calibration in advance, but long periods of use disrupt the calibration record between the eye and the scene camera. In addition, the focused object might not be estimated even if the point-of-regard is estimated using a portable eye-tracker. Therefore, we propose a novel method for estimating the object that a user is focused upon, where an eye camera captures the reflection on the corneal surface. Eye and environment information can be extracted from the corneal surface image simultaneously. We use inverse ray tracing to rectify the reflected image and a scale-invariant feature transform to estimate the object where the point-of-regard is located. Unwarped images can also be generated continuously from corneal surface images. We consider that our proposed method could be applied to a guidance system and we confirmed the feasibility of this application in experiments that estimated the object focused upon and the point-of-regard.

2013 ◽  
Vol 347-350 ◽  
pp. 3469-3472 ◽  
Author(s):  
Wei Wu ◽  
Sen Lin ◽  
Hui Song

Compared with the traditional method of contact collection, contactless acquisition is the mainstream and trend of palm vein recognition. However, this method may lead to image deformation caused by no parallel of the palm plane and the sensor plane. In order to improve the limited effect of Scale Invariant Feature Transform (SIFT) about this problem, a better method of palm vein recognition which based on principle line SIFT is proposed. Based on the self-built database, this method is compared with the SIFT and other typical palm vein recognition methods, the experimental results show that our system can achieve the best performance.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 353
Author(s):  
A Roshna Meeran ◽  
V Nithya

The paper focuses on the investigation of image processing of Electronic waste detection and identification in recycling process of all Electronic items. Some of actually collected images of E-wastes would be combined with other wastes. For object matching with scale in-variance the SIFT (Scale -Invariant- Feature Transform) is applied. This method detects the electronic waste found among other wastes and also estimates the amount of electronic waste detected the give set of wastes. The detection of electronics waste by this method is most efficient ways to detect automatically without any manual means.


2019 ◽  
Vol 8 (2) ◽  
pp. 6053-6057

Telugu language is one of the most spoken Indian languages throughout the world. Since it has an old heritage, so Telugu literature and newspaper publications can be scanned to identify individual words. Identification of Telugu word images poses serious problems owing to its complex structure and larger set of individual characters. This paper aims to develop a novel methodology to achieve the same using SIFT (Scale Invariant Feature Transform) features of telugu words and classifying these features using BoVW (bag of visual words). The features are clustered to create a dictionary using k-means clustering. These words are used to create a visual codebook of the word images and the classification is achieved through SVM (Support Vector Machine).


Sign in / Sign up

Export Citation Format

Share Document