scholarly journals Diversity and plant interactions of aphids (Hemiptera: Aphidomorpha) adjacent to Çardak Lagoon with new aphid and host records for Turkey

2021 ◽  
Vol 45 (4) ◽  
pp. 425-439
Author(s):  
Şahin KÖK
Keyword(s):  
2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2015 ◽  
Vol 537 ◽  
pp. 49-58 ◽  
Author(s):  
A Davidson ◽  
JN Griffin ◽  
C Angelini ◽  
F Coleman ◽  
RL Atkins ◽  
...  

Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


2006 ◽  
Vol 1 (8) ◽  
pp. 347-347
Author(s):  
Michael F. Cohen ◽  
Mark Mazzola ◽  
Hideo Yamasaki
Keyword(s):  

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 246
Author(s):  
Paul M. Severns ◽  
Melinda Guzman-Martinez

New plant pathogen invasions typified by cryptic disease symptoms or those appearing sporadically in time and patchily in space, might go largely unnoticed and not taken seriously by ecologists. We present evidence that the recent invasion of Pyrenopeziza plantaginis (Dermateaceae) into the Pacific Northwest USA, which causes foliar necrosis in the fall and winter on Plantago lanceolata (plantain), the primary (non-native) foodplant for six of the eight extant Taylor’s checkerspot butterfly populations (Euphydryas editha taylori, endangered species), has altered eco-evolutionary foodplant interactions to a degree that threatens butterfly populations with extinction. Patterns of butterfly, larval food plant, and P. plantaginis disease development suggested the ancestral relationship was a two-foodplant system, with perennial Castilleja spp. supporting oviposition and pre-diapause larvae, and the annual Collinsia parviflora supporting post-diapause larvae. Plantain, in the absence of P. plantaginis disease, provided larval food resources throughout all butterfly life stages and may explain plantain’s initial adoption by Taylor’s checkerspot. However, in the presence of severe P. plantaginis disease, plantain-dependent butterfly populations experience a six-week period in the winter where post-diapause larvae lack essential plantain resources. Only C. parviflora, which is rare and competitively inferior under present habitat conditions, can fulfill the post-diapause larval feeding requirements in the presence of severe P. plantaginis disease. However, a germination timing experiment suggested C. parviflora to be suitably timed for only Washington Taylor’s checkerspot populations. The recent invasion by P. plantaginis appears to have rendered the ancestrally adaptive acquisition of plantain by Taylor’s checkerspot an unreliable, maladaptive foodplant interaction.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Earnest Oghenesuvwe Erhirhie ◽  
Chidozie Ikegbune ◽  
Anthony Ifeanyi Okeke ◽  
Chukwunonso Chukwudike Onwuzuligbo ◽  
Ngozi Ukamaka Madubuogwu ◽  
...  

AbstractDevelopment of resistance by malaria parasites to conventional antimalarial drugs has rejuvenated the exploration of herbal medicine as alternatives. Also, the increasing rate of the use of herbal antimalarial remedies in combination with conventional antimalarial drugs (both synthetic and semi-synthetic) has inspired researchers to validate their herb-drug interaction effects. This review evaluated the interaction outcomes between herbal antimalarial drugs in combination with conventional antimalarial drugs. With the aid of electronic databases, Pubmed and Google scholar, articles related to this subject were sourced from English peer reviewed scientific journals published from 2003 to 2020. Search terms used include “antimalarial-herbal drugs interaction”, “antimalarial medicinal plant interactions with conventional antimalarial drugs”, “drug-herbal interactions, “antimalarial drugs and medicinal plants”. Synergistic, antagonistic and none effects were reported among 30 studies reviewed. Among 18 in vivo studies on P. berghei and P. yoelii nigerense infected mice model, 14 showed synergism, 3 showed antagonism and 1 involving three plants showed both effects. Among 9 in-vivo studies involving normal animal (non-infected), 2 showed antagonism, 2 showed synergism and 5 showed none-effects. Two (2) studies on human volunteers and one (1) in vitro quantitative study showed that Garcinia kola reduced plasma concentrations of quinine and halofantrine. Generally, majority of herbal antimalarial drugs showed synergistic effects with CAMDs. Vernonia amygdalina was the most studied plant compared to others. Consequently, herbal remedies that produced synergistic effects with conventional antimalarial drugs may be prospects for standardization and development of antimalarial-medicinal plant combination therapy that could curtail malaria resistance to conventional antimalarial therapies.


Sign in / Sign up

Export Citation Format

Share Document