scholarly journals Testing different single nucleotide polymorphism selection strategies for prediction of genomic breeding values in dairy cattle based on low density panels

2013 ◽  
Vol 58 (No. 3) ◽  
pp. 136-145 ◽  
Author(s):  
J. Szyda ◽  
K. Żukowski ◽  
S. Kamiński ◽  
A. Żarnecki

In human and animal genetics dense single nucleotide polymorphism (SNP) panels are widely used to describe genetic variation. In particular genomic selection in dairy cattle has become a routinely applied tool for prediction of additive genetic values of animals, especially of young selection candidates. The aim of the study was to investigate how well an additive genetic value can be predicted using various sets of approximately 3000 SNPs selected out of the 54 001 SNPs in an Illumina BovineSNP50 BeadChip high density panel. Effects of SNPs from the nine subsets of the 54 001 panel were estimated using a model with a random uncorrelated SNPs effect based on a training data set of 1216 Polish Holstein-Friesian bulls whose phenotypic records were approximated by deregressed estimated breeding values for milk, protein, and fat yields. Predictive ability of the low density panels was assessed using a validation data set of 622 bulls. Correlations between direct and conventional breeding values routinely estimated for the Polish population were similar across traits and clearly across sets of SNPs. For the training data set correlations varied between 0.94 and 0.98, for the validation data set between 0.25 and 0.46. The corresponding correlations estimated using the 54 001 panel were: 0.98 for the three traits (training), 0.98 (milk and fat yields, validation), and 0.97 (protein yield, validation). The optimal subset consisted of SNPs selected based on their highest effects for milk yield obtained from the evaluation of all 54 001 SNPs. A low density SNP panel allows for reasonably good prediction of future breeding values. Even though correlations between direct and conventional breeding values were moderate, for young selection candidates a low density panel is a better predictor than a commonly used average of parental breeding values.

2020 ◽  
Vol 69 (5) ◽  
pp. 848-862 ◽  
Author(s):  
Melisa Olave ◽  
Axel Meyer

Abstract The Midas cichlids of the Amphilophus citrinellus spp. species complex from Nicaragua (13 species) are an extraordinary example of adaptive and rapid radiation ($<$24,000 years old). These cichlids are a very challenging group to infer its evolutionary history in phylogenetic analyses, due to the apparent prevalence of incomplete lineage sorting (ILS), as well as past and current gene flow. Assuming solely a vertical transfer of genetic material from an ancestral lineage to new lineages is not appropriate in many cases of genes transferred horizontally in nature. Recently developed methods to infer phylogenetic networks under such circumstances might be able to circumvent these problems. These models accommodate not just ILS, but also gene flow, under the multispecies network coalescent (MSNC) model, processes that are at work in young, hybridizing, and/or rapidly diversifying lineages. There are currently only a few programs available that implement MSNC for estimating phylogenetic networks. Here, we present a novel way to incorporate single nucleotide polymorphism (SNP) data into the currently available PhyloNetworks program. Based on simulations, we demonstrate that SNPs can provide enough power to recover the true phylogenetic network. We also show that it can accurately infer the true network more often than other similar SNP-based programs (PhyloNet and HyDe). Moreover, our approach results in a faster algorithm compared to the original pipeline in PhyloNetworks, without losing power. We also applied our new approach to infer the phylogenetic network of Midas cichlid radiation. We implemented the most comprehensive genomic data set to date (RADseq data set of 679 individuals and $>$37K SNPs from 19 ingroup lineages) and present estimated phylogenetic networks for this extremely young and fast-evolving radiation of cichlid fish. We demonstrate that the MSNC is more appropriate than the multispecies coalescent alone for the analysis of this rapid radiation. [Genomics; multispecies network coalescent; phylogenetic networks; phylogenomics; RADseq; SNPs.]


Sign in / Sign up

Export Citation Format

Share Document