scholarly journals ZrMoN films on 304 stainless steel as bipolar plates for PEMFCs using physical-vapor-deposition (PVD) technology

2017 ◽  
Vol 51 (4) ◽  
pp. 699-705 ◽  
Author(s):  
C.-B. Zheng ◽  
X. Chen
2009 ◽  
Vol 417-418 ◽  
pp. 49-52 ◽  
Author(s):  
Paolo Baldissera ◽  
Stefano Cavalleri ◽  
Paolo Marcassoli ◽  
Federico Tordini

In this paper the influence of DCT (Deep Cryogenic Treatment) and a CrN arc-deposited PVD (Physical Vapor Deposition) coating on the fatigue behaviour of AISI 302 stainless steel was studied. Rotating bending tests were carried out on standard specimens to evaluate the fatigue limit at 300000 load cycles. The single and the combined effects of the two treatments were investigated by addressing untreated, PVD-coated and both PVD-coated and DC-treated specimens to the tests. All the series of specimens were also tested statically and laboratory analyses including fracture surface SEM observations and hardness measurements were performed.


2012 ◽  
Vol 6 (1) ◽  
pp. 14-21 ◽  
Author(s):  
J. C. Caicedo ◽  
G. Cabrera ◽  
H. H. Caicedo ◽  
W. Aperador

Corrosive-erosive effect on AISI D3 steel, 304 stainless steel and CrN/AlN coating in aqueous NaCl slurries was studied. CrN/AlN multilayer films with a thickness of 3 µm and bilayer period of Λ = 60 nm (50 bilayers) were obtained by using the physical vapor deposition (PVD) technique (magnetron sputtering). The corrosion-erosion experiments were performed in a test machine in which the impingement velocity, impact angle, concentration of solids and pH of the solution were controlled. Polarization curves were simultaneously obtained to correlate the electrochemical effects to the erosive wear mechanisms. The slurry used consists of silica particles suspended in a mixture of acid solution and 3.5% NaCl, with a pH value of 5.6. Electrochemical results showed the best corrosion resistance for 304 stainless steels. Additionally, the surface analysis by SEM micrograph revealed formation of cracks in CrN/AlN multilayers coating and plastic deformation in both steel substrates (AISI D3 steel, 304 stainless steel), especially when the mean impact angle is a critical value of 90°. Measurements of critical and passive current densities showed that the behavior of coated materials differed depending on the substrate that is used. Nonetheless, in a general way, by increasing the impact angle and by changing its incidence from normal to grazing, it led to a resistance to corrosion-erosion processes.


2021 ◽  
Vol 70 (10) ◽  
pp. 318-322
Author(s):  
Ayumu Minoura ◽  
Masanobu Kumagai ◽  
Sachi Ikemoto ◽  
Yasuko Kitahara ◽  
Wataru Kimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document