scholarly journals SOLUTION OF NONLINEAR HYPERBOLIC EQUATIONS BY AN APPROXIMATE ANALYTICAL METHOD

Author(s):  
Oleg Ludinovich BOZIEV ◽  
◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 1301-1309 ◽  
Author(s):  
František Kaštánek ◽  
Marie Fialová

The possibility of use of approximate models for calculation of selectivity of consecutive reactions is critically analysed. Simple empirical criteria are proposed which enable safer application of approximate analytical reactions. A more universal modification has been formulated by use of which the difference of selectivity calculated by the exact numerical method and by the approximate analytical method is at maximum 12%.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1483
Author(s):  
Shanqin Chen

Weighted essentially non-oscillatory (WENO) methods are especially efficient for numerically solving nonlinear hyperbolic equations. In order to achieve strong stability and large time-steps, strong stability preserving (SSP) integrating factor (IF) methods were designed in the literature, but the methods there were only for one-dimensional (1D) problems that have a stiff linear component and a non-stiff nonlinear component. In this paper, we extend WENO methods with large time-stepping SSP integrating factor Runge–Kutta time discretization to solve general nonlinear two-dimensional (2D) problems by a splitting method. How to evaluate the matrix exponential operator efficiently is a tremendous challenge when we apply IF temporal discretization for PDEs on high spatial dimensions. In this work, the matrix exponential computation is approximated through the Krylov subspace projection method. Numerical examples are shown to demonstrate the accuracy and large time-step size of the present method.


2008 ◽  
Vol 15 (3) ◽  
pp. 555-569
Author(s):  
Tariel Kiguradze

Abstract In the rectangle Ω = [0, a] × [0, b] the nonlinear hyperbolic equation 𝑢(2,2) = 𝑓(𝑥, 𝑦, 𝑢) with the continuous right-hand side 𝑓 : Ω × ℝ → ℝ is considered. Unimprovable in a sense sufficient conditions of solvability of Dirichlet, Dirichlet–Nicoletti and Nicoletti boundary value problems are established.


Sign in / Sign up

Export Citation Format

Share Document