On generic complexity of the isomorphism problem for finite semigroups

Author(s):  
A. N. Rybalov
2021 ◽  
pp. 120-128
Author(s):  
A. N. Rybalov ◽  

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.


2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Alexander Rybalov

AbstractA generic-case approach to algorithmic problems was suggested by Myasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies the behavior of an algorithm on typical inputs and ignores the rest of the inputs. In this paper we consider generic complexity of the searching graph isomorphism problem. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the searching graph isomorphism problem is hard in the worst case.


2020 ◽  
Vol 25 (4) ◽  
pp. 10-15
Author(s):  
Alexander Nikolaevich Rybalov

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, I. Kapovich, P. Schupp and V. Shpilrain in 2003. This approach studies behavior of an algo-rithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we prove that the subset sum problems for the monoid of integer positive unimodular matrices of the second order, the special linear group of the second order, and the modular group are generically solvable in polynomial time.


2012 ◽  
Vol 217 ◽  
pp. 1-11 ◽  
Author(s):  
V. Arvind ◽  
Bireswar Das ◽  
Johannes Köbler ◽  
Sebastian Kuhnert
Keyword(s):  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jördis-Ann Schüler ◽  
Steffen Rechner ◽  
Matthias Müller-Hannemann

AbstractAn important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equivalence classes and an effective equivalence test. Based on extensive computational experiments, we show that our algorithm is significantly faster than existing implementations within , and . We provide our Java implementation as an easy-to-use, open-source package (via GitHub) which is compatible with . It fully supports the distinction of different isotopes and molecules with radicals.


2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


Sign in / Sign up

Export Citation Format

Share Document