Seismological Research Requirements for a Comprehensive Test-Ban Monitoring System

10.17226/5067 ◽  
1995 ◽  
1994 ◽  
Vol 37 (3) ◽  
Author(s):  
F. Ringdal

The UN Conference on Disarmament's Group of Scientific Experts (GSE) was established in 1976 to consider international co operative measures to detect and identify seismic events. Over the years, the GSE has developed and tested several concepts for an International Seismic Monitoring System (ISMS) for the purpose of assisting in the verification of a potential comprehensive test ban treaty. The GSE is now planning its third global technical test. (GSETT 3) in order to test new and revisled concepts for an ISMS. GSETT 3 wili be an unprecedented global effort to conduct an operationally realistic test of rapid collection, distribution and processing of seismie data. A global network of seismograph stations will provide data to an International Data Center, where the data will be processed an results made available to participants. The full scaIe phase of GSETT 3 is scheduled to begin in January 1995.


2021 ◽  
Author(s):  
thomas philippe ◽  
sylvain carre

<p>CEA is operating the French segment of the International Monitoring System of the Comprehensive Test Ban Treaty (CTBT). Construction of IMS stations was started on the late 90’ and one last station was pending before completing commitment of France.</p><p>Taking into account experience learned over the years, design was thought to combine enhanced detection capability and robustness. It gives also the opportunity to improve out monitoring tools and technics.</p><p>Station run 9 sensors spread out on a deep forest in Guadeloupe; power is distributed with buried cable while data are received with optical fibre to a central facility from which frames are sent to the International Data Center to the CTBTO. Constructiion was carried out in 2019.</p><p>IS25 was certified by the PTS of the CTBTO in November 2020</p>


2000 ◽  
Vol 79 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Klaus-G. Hinzen ◽  
Stefan Pietsch

AbstractDiscrimination between quarry blasts and earthquakes has gained importance due to signature of the Comprehensive Test Ban Treaty. In this context, large chemical explosions are significant. In the routine analysis of data from local seismograph networks, discrimination between smaller blasts and micro-earthquakes is not always clear. Many quarries are in operation and blasts far outnumber natural earthquakes in the highly industrialized northern Rhine area.We compiled a list of active quarries in the Northern Rhine Area and mapped their locations. We then created a database from a questionnaire sent out to all quarries on the list. From the 33% of questionnaires that were returned, we discerned some representative values for the main blasting parameters and explosive consumption. In the study area of 72,000 km2, approx. 21,000 blasts are fired per year (80 per working day). Most of the blasts (72%) have total explosive charges between 400 and 4500 kg. Shots with charges above 10 tons are rare (20-30 per year). Some 80% of the blasts are ripple-fired with a nominal firing time interval of 20 ms.Based on empirical amplitude vs. distance curves from vibration control measurements, a relation between maximum charge weight per delay time, L (kg), and a ‘quarry blast’ magnitude, MQB, is derived: MQB = 0.6·log10(L) + 0.131. Using this relation and extrapolating the database from the questionnaire shows that for magnitudes between 1 and 2, blasts occur 200–250 times more frequently than micro-earthquakes in the Northern Rhine area.


2002 ◽  
Vol 2 (6) ◽  
pp. 2133-2150 ◽  
Author(s):  
J.-P. Issartel ◽  
J. Baverel

Abstract. An international monitoring system is being built as a verification tool for the Comprehensive Test Ban Treaty. Forty stations will measure on a worldwide daily basis the concentration of radioactive noble gases. The paper introduces, by handling preliminary real data, a new approach of backtracking for the identification of sources after positive measurements. When several measurements are available the ambiguity about possible sources is reduced significantly. As an interesting side result it is shown that diffusion in the passive tracer dispersion equation is necessarily a self-adjoint operator.


1999 ◽  
Vol 89 (4) ◽  
pp. 989-1003 ◽  
Author(s):  
István Bondár ◽  
Robert G. North ◽  
Gregory Beall

Abstract The prototype International Data Center (PIDC) in Arlington, Virginia, has been developing and testing software and procedures for use in the verification of the Comprehensive Test Ban Treaty. After three years of operation with a global network of array and three-component stations, it has been possible to characterize various systematic biases of those stations that are designated in the Treaty as part of the International Monitoring System (IMS). These biases include deviations of azimuth and slowness measurements from predicted values, caused largely by lateral heterogeneity. For events recorded by few stations, azimuth and slowness are used in addition to arrival-time data for location by the PIDC. Corrections to teleseismic azimuth and slowness observations have been empirically determined for most IMS stations providing data to the PIDC. Application of these corrections is shown to improve signal association and event location. At some stations an overall systematic bias can be ascribed to local crustal structure or to unreported instrumental problems. The corrections have been applied in routine operation of the PIDC since February 1998.


Sign in / Sign up

Export Citation Format

Share Document