chemical explosions
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 29)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Moira L. Pyle ◽  
William R. Walter

Abstract High-frequency (∼> 2 Hz) seismic P/S amplitude ratios are well-established as a discriminant to distinguish between natural earthquakes and underground explosions at regional distances (∼200–1500 km). As research shifts toward identifying lower-yield events, work has begun to investigate the potential of this discriminant for use at local distances (<200 km), in which initial results raise questions about its effectiveness. Here, we utilize data from several chemical explosion experiment series at the Nevada National Security Site in southern Nevada in the United States to study explosion Pg/Lg ratios across the range of local to regional distances. The experiments are conducted over differing emplacement conditions, with contrasting geologies and a variety of yields and depths of burial, including surface explosions. We first establish the similarities of Pg/Lg ratios from chemical explosions to those from historic nuclear tests and conclude that, as previous data have suggested, chemical explosion ratios are good proxies for nuclear tests. We then examine Pg/Lg ratios from the new experiment series as functions of distance, yield, depth of burial, and scaled depth of burial (SDOB). At far-local and regional distances, we observe consistently higher ratios from hard-rock explosions compared to ones in a weaker dry alluvium medium, consistent with prior regional distance results. No other trends with yield, depth of burial, or SDOB are strongly evident. Scatter in the observed ratios is very high, particularly at the shortest event-to-station distances, suggesting that small-scale path effects play a significant role. On average, the local distance explosion Pg/Lg ratios show remarkable consistency across all the variations in emplacement. Explosion source models will need to reproduce these results.


Author(s):  
Hafidh A. A. Ghalib ◽  
Gordon Kraft ◽  
Abdulmutaleb Alchalbi ◽  
Robert Wagner

Abstract On 4 August 2020 Lebanon’s capital, Beirut, was rocked by a sequence of colocated fires and chemical explosions that left hundreds of people dead, thousands injured and homeless, demolished the city’s seaport, and heavily damaged the surrounding neighborhoods and businesses. The event was well recorded by many regional seismic stations in and around the eastern Mediterranean Sea. Using a network of 58 stations, 105 regional seismic phases, and a Bayesian methodology places the event at 1.8 km south of the ground-truth location, the seaport warehouse. Achieving this accuracy is significant, considering very limited local seismic data were available to use in this study. The location bias is attributed, in large part, to a small but statistically significant difference in the Moho velocity for sea paths compared with continental paths. The depth to the Moho is generally consistent with the iasp91 model. Concurrent to the port explosion is a series of unrelated small explosions, 11 s apart, attributed to a seismic survey that was being carried out at the time in the eastern Mediterranean Sea using air guns.


Author(s):  
Michael E. Pasyanos ◽  
Andrea Chiang

ABSTRACT Moment tensor (MT) solutions are proving increasingly valuable in explosion monitoring, especially now that they are more routinely calculated for the unconstrained, full (six component) MT. In this study, we have calculated MTs for U.S. underground nuclear tests conducted at the Nevada National Security Site using seismic recordings primarily from the Livermore Nevada Network. We are able to determine them for 130 nuclear explosions from 1970 to 1996 for a range of yields and under a variety of material conditions, which we have supplemented with 10 additional chemical explosions at the test site. The result is an extensive database of MTs that can be used to assess the performance of important monitoring tasks such as event identification and yield determination. We test the explosion event screening on the fundamental lune of the MT eigensphere and find MT screening to be a robust discriminant between earthquakes and explosions. We then explore the estimation of moment-derived yield, in which we find that material properties are the largest contributor to differences in the estimated moment-to-yield ratio. Further research conducted on this dataset can be used to develop, test, and improve various explosion monitoring methodologies.


Author(s):  
Keehoon Kim ◽  
Arthur R. Rodgers ◽  
Milton A. Garces ◽  
Stephen C. Myers

ABSTRACT Chemical explosions generate pressure disturbances in air that radiate as nonlinear shock waves near the source and transition into acoustic waves with distance. Because low-frequency acoustic waves generally travel large distances without significant loss of energy, they are often used for explosion monitoring and yield estimation. However, quantitative relationships between acoustic energy and explosion yields are required for accurate yield estimation. Here, we develop an empirical acoustic source model for chemical explosions from experimental data. The empirical model returns the acoustic pressure waveform for the detonation of 1 kg of trinitrotoluene, which is conventionally used to represent the explosive release of 4.184 MJ of explosion energy. The full-waveform model can be used to predict acoustic signals for an arbitrary yield of a high-explosive detonation based on the standard scaling law and to estimate acoustic energies in a specific frequency range. We evaluate the accuracy of the acoustic source model independently by estimating the yield of other explosive events that are not included in the model development. Statistical characteristics of the model and their implications for the uncertainty quantification of estimated yields are discussed.


2021 ◽  
Vol 1 (1) ◽  
pp. 3-10
Author(s):  
Sean R. Ford ◽  
William R. Walter

Abstract Differences in the seismic coda of neighboring events can be used to investigate source location offsets and medium change with coda wave interferometry (CWI). We employ CWI to infer the known relative location between two chemical explosions in Phase I of the Source Physics Experiment (SPE). The inferred displacement between the first, SPE-1, and second, SPE-2, chemical explosion is between 6 and 18 m, with an expectation of 9.2 m, where the known separation is close to 9.4 m. We also employ CWI to find any velocity perturbation due to damage from SPE-2, by comparing its coda with the collocated third SPE chemical explosion, SPE-3. We find that damage due to SPE-2 must be confined to a spherical region with radius less than 10 m and velocity perturbation less than 25%.


2021 ◽  
Author(s):  
Islam Hamama ◽  
Masa-yuki Yamamoto ◽  
Noha Ismail Medhat

<p>Chemical explosions generate shockwaves which can be recorded at far distant with infrasound sensors. Infrasound propagation and energy of the explosion are main factors which control the infrasonic wave arrivals. In this study, a China explosion which happened on 22 March 2019, Biuret explosion on 4 August 2020, and the explosion of MOMO-2 rocket failure during the launching process will be investigated. The infrasound data sets of these explosions are extracted from IMS infrasound stations and KUT infrasound sensors which are distributed all over Japan.</p><p>The explosions had different propagation conditions which can be simulated using ray tracing and parabolic equation numerical methods, furthermore the transmission losses can be estimated in order to determine the yield energy in TNT-equivalent of each explosion, moreover the severe surface damages were identified by using InSAR techniques which can be classified according to the interferometric coherency.</p><p>In conclusion, the integration between the infrasound technique and InSAR showed the safety zone which should be taken in account for any chemical factories or rocket launch sites.</p>


2021 ◽  
Vol 18 (1) ◽  
pp. 17-30
Author(s):  
Zhang Liang-Yong ◽  
Li Xin ◽  
Liang Xu-Bin ◽  
Wang Tong-Dong ◽  
Tang Shi-Ying ◽  
...  

2021 ◽  
Author(s):  
Bo Xie ◽  
Xinggui Long ◽  
Sheng Hu
Keyword(s):  

A laboratorial facility has been built to the generation and obtainment of cerium (Ce)-bearing aerosols with the aid of chemical explosions in the airtight tank. The characteristics of particles for...


Sign in / Sign up

Export Citation Format

Share Document