scholarly journals Trajectory Generation from Motion Capture for a Planar Biped Robot in Swing Phase

2015 ◽  
Vol 11 (22) ◽  
pp. 25-47 ◽  
Author(s):  
Diego A. Bravo M. ◽  
Carlos F. Rengifo R.

This paper proposes human motion capture to generate movements for theright leg in swing phase of a biped robot restricted to the sagittal plane.Such movements are defined by time functions representing the desiredangular positions for the joints involved. Motion capture performed witha Microsoft KinectTMcamera and from the data obtained joint trajec-tories were generated to control the robot’s right leg in swing phase. Theproposed control law is a hybrid strategy; the first strategyis based ona computed torque control to track reference trajectories,and the secondstrategy is based on time scaling control ensuring the robot’s balance. Thiswork is a preliminary study to generate humanoid robot trajectories frommotion capture.

2010 ◽  
Vol 07 (01) ◽  
pp. 127-156 ◽  
Author(s):  
JUNG-YUP KIM ◽  
YOUNG-SEOG KIM

This paper proposes an efficient walking pattern mapping algorithm from motion capture data onto biped humanoid robots. Currently, the technology known as human motion capture is widely utilized to generate various humanlike motions in many applications, including robotics. An important thing is that several difficulties are associated with motion capture data. These include a data offset issue, noise, and drift problems due to measurement errors caused by imperfect camera calibration, and marker position. If a biped robot uses motion capture data without suitable post-processes, the walking motion of the robot will differ from an actual walking motion, and the Zero Moment Point (ZMP) will be asymmetrical and noisy, leading to unstable walking. A further difficulty exists in the walking pattern mapping process due to the different joint numbers, link sizes, and weights between a human and a robot. Although walking pattern mapping is suitable after addressing the above difficulties, a slip problem between the feet and the ground can continue to cause problems. To solve these difficulties efficiently, a Fourier fitting method is proposed in this research. Improvements of walking pattern and the ZMP trajectory are confirmed using the proposed method. Furthermore, a geometric mapping method is introduced to generate walking patterns for various biped robots while maintaining a degree of similarity to humans. By applying a no-slip constraint to the feet and modifying the joint angles through inverse kinematics, the slip problem is also solved. The effectiveness of the proposed algorithm is verified through computer simulations of two different biped robots that have different sizes, weights, walking cycles, and step lengths.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Xiaogang Song ◽  
Yongjie Zhao ◽  
Chengwei Chen ◽  
Liang’an Zhang ◽  
Xinjian Lu

SUMMARY In this paper, an online self-gain tuning method of a PD computed torque control (CTC) is used for a 3UPS-PS parallel robot. The CTC is applied to the 3UPS-PS parallel robot based on the robot dynamic model which is established via a virtual work principle. The control system of the robot comprises a nonlinear feed-forward loop and a PD control feedback loop. To implement real-time online self-gain tuning, an adjustment method based on the genetic algorithm (GA) is proposed. Compared with the traditional CTC, the simulation results indicate that the control algorithm proposed in this study can not only enhance the anti-interference ability of the system but also improve the trajectory tracking speed and the accuracy of the 3UPS-PS parallel robot.


2021 ◽  
pp. 1-9
Author(s):  
G. Perumalsamy ◽  
Deepak Kumar ◽  
Joel Jose ◽  
S. Joseph Winston ◽  
S. Murugan

2017 ◽  
Vol 64 (2) ◽  
pp. 1589-1599 ◽  
Author(s):  
Guiyu Xia ◽  
Huaijiang Sun ◽  
Xiaoqing Niu ◽  
Guoqing Zhang ◽  
Lei Feng

Sign in / Sign up

Export Citation Format

Share Document