scholarly journals Influence of Random Track Irregularities on Dynamic Response of Bridge/Track Structure/High-Speed Train Systems

Author(s):  
Marian Klasztorny ◽  
Monika Podworna
2013 ◽  
Vol 12 (1) ◽  
pp. 259-266
Author(s):  
Monika Podworna ◽  
Marian Klasztorny

A theory of the quasi-exact physical and mathematical modelling of the composite (steel–concrete) bridge / ballasted track structure / high-speed train system (BTT) was developed, including viscoelastic suspensions of rail-vehicles on two-axle bogies, the non-linear Hertz contact stiffness and one-sided contact between the wheel sets and the rails, the viscoelastic and inertia features of the bridge, the viscoelastic track structure on and beyond the bridge, the approach slabs, and random track irregularities. Based on this theory, advanced computer algorithms for the BTT numerical modelling were written and a computer program to simulate the vertical vibrations of the BTT systems was developed. The bridge subject to the preliminary dynamic analysis and designed according to Polish standards has a 15.00 m span length. The bridge was loaded by the German ICE-3 high-speed train moving at the critical (180 and 270 km/h) and the maximum (300 km/h) operating speeds.


2018 ◽  
Vol 196 ◽  
pp. 01050
Author(s):  
Monika Podwórna

The study focuses on dynamic analysis of composite bridge / track structure / train systems (BTT systems) with random vertical track irregularities taken into consideration. The paper presents the results of numerical analysis of advanced virtual models of series-of-types of single-span simply-supported railway steel-concrete bridges (SCB) with symmetric platforms, located on lines with the ballasted track structure adapted to traffic of high-speed trains.


2013 ◽  
Vol 368-370 ◽  
pp. 1431-1437 ◽  
Author(s):  
Tian Yu Lu ◽  
Zu Jun Yu ◽  
Hong Mei Shi

The interaction of track structure and high-speed train has greater impact on safe and steady running of the trains. This paper obtained acceleration and frequency spectrum of the train's running vibration in the case of sleeper’s spacing and continuous failure, and continuous and spacing loose tie by establishing the vertical model of vehicle-track coupling system, and analyzed the sleeper failure and loose tie which has a greater impact on the 40-80 Hz vibration frequency of the train, which provided a basis for track maintenance.


Sign in / Sign up

Export Citation Format

Share Document