track structure
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 129)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yoshie Yachi ◽  
Takeshi Kai ◽  
Yusuke Matsuya ◽  
Yuho Hirata ◽  
Yuji Yoshii ◽  
...  

Abstract Magnetic resonance-guided radiotherapy (MRgRT) has been developed and installed in recent decades for external radiotherapy in several clinical facilities. The Lorentz force modulates dose distribution by charged particles in MRgRT; however, the impact by this force on low-energy electron track structure and early DNA damage induction remain unclear. In this study, we estimated features of electron track structure and biological effects in a static magnetic field (SMF) using a general-purpose Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that enables us to simulate low-energy electrons down to 1 meV by track-structure mode. The macroscopic dose distributions by electrons above approximately 300 keV initial energy in liquid water are changed by both perpendicular and parallel SMFs against the incident direction, indicating that the Lorentz force plays an important role in calculating dose within tumours. Meanwhile, DNA damage estimation based on the spatial patterns of atomic interactions indicates that the initial yield of DNA double-strand breaks (DSBs) is independent of the SMF intensity. The DSB induction is predominantly attributed to the secondary electrons below a few tens of eV, which are not affected by the Lorentz force. Our simulation study suggests that treatment planning for MRgRT can be made with consideration of only changed dose distribution.


Author(s):  
Yusuke Matsuya ◽  
Takeshi Kai ◽  
Tatsuhiko Sato ◽  
Tatsuhiko Ogawa ◽  
Yuho Hirata ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11830
Author(s):  
Zhi-Ping Zeng ◽  
Yan-Cai Xiao ◽  
Wei-Dong Wang ◽  
Xu-Dong Huang ◽  
Xiang-Gang Du ◽  
...  

Background: In order to study the applicability of Low Vibration Track (LVT) in heavy-haul railway tunnels, this paper carried out research on the dynamic effects of LVT heavy-haul railway wheels and rails and provided a technical reference for the structural design of heavy-haul railway track structures. Methods: Based on system dynamics response sensitivity and vehicle-track coupling dynamics, the stability of the upper heavy-haul train, the track deformation tendency, and the dynamic response sensitivity of the vehicle-track system under the influence of random track irregularity and different track structure parameters were calculated, compared and analyzed. Results: Larger under-rail lateral and vertical structural stiffness can reduce the dynamic response of the rail system. The vertical and lateral stiffness under the block should be set within a reasonable range to achieve the purpose of reducing the dynamic response of the system, and beyond a certain range, the dynamic response of the rail system will increase significantly, which will affect the safety and stability of train operation. Conclusions: Considering the changes of track vehicle body stability coefficients, the change of deformation control coefficients, and the sensitivity indexes of dynamic performance coefficients to track structure stiffness change, the recommended values of the vertical stiffness under rail, the lateral stiffness under rail, the vertical stiffness under block, and the lateral stiffness under block are, respectively 160 kN/mm, 200 kN/mm, 100 kN/mm, and 200 kN/mm.


Sign in / Sign up

Export Citation Format

Share Document