ballastless track
Recently Published Documents


TOTAL DOCUMENTS

349
(FIVE YEARS 135)

H-INDEX

12
(FIVE YEARS 6)

2022 ◽  
Vol 252 ◽  
pp. 113659
Author(s):  
Yang Yang ◽  
Guanjun Zhang ◽  
Gang Wu ◽  
Dafu Cao

2022 ◽  
Vol 319 ◽  
pp. 126058
Author(s):  
Zhiping Zeng ◽  
Mengxuan Ye ◽  
Weidong Wang ◽  
Jing Liu ◽  
Shiwen Shen ◽  
...  

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 120
Author(s):  
Bin Yan ◽  
Ruiqi Cheng ◽  
Haoran Xie ◽  
Xiangmin Zhang

In the process of heat exchange with the external environment, the internal temperature of ballastless track structure presents a nonlinear distribution. The vertical temperature gradient will cause repeated warping and deformation of track slab, resulting in mortar layer separation, which will affect driving comfort and track durability. The traditional temperature field analysis method of concrete structure based on thermodynamics has the disadvantages of too many assumptions, difficult parameter selection and too much calculation of energy consumption. In this paper, based on the finite element software ANSYS, the heat exchange was transformed into the boundary condition of heat flux, which was applied to the thermodynamic analysis model to study the nonlinear temperature distribution law of ballastless track. The accuracy of the analysis method was verified by the measured data. On this basis, the regional distribution law of temperature gradient of ballastless track under different geographical coordinates and climatic conditions was studied. By adding a regional adjustment coefficient, the vertical temperature load model of ballastless track suitable for typical areas in China was proposed. The proposed temperature load model makes up for the lack of refinement of climate division and temperature load model in relevant specifications, and has strong engineering application and popularization value.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3033
Author(s):  
Xinjun Liu ◽  
Wenjiang Wu ◽  
Liaomo Zheng ◽  
Shiyu Wang ◽  
Qiang Zhang ◽  
...  

In the construction of high-speed railway infrastructure, a CRTS-III slab ballastless track plate has been widely used. Anchor sealing is an essential step in the production of track plates. We design a novel automated platform based on industrial robots with vision guidance to improve the automation of a predominantly human-powered anchor sealing station. This paper proposes a precise and efficient target localization method for large and high-resolution images to obtain accurate target position information. To accurately update the robot’s work path and reduce idle waiting time, this paper proposes a low-cost and easily configurable visual localization system based on dual monocular cameras, which realizes the acquisition of track plate position information and the correction of position deviation in the robot coordinate system. We evaluate the repeatable positioning accuracy and the temporal performance of the visual localization system in a real production environment. The results show that the repeatable positioning accuracy of this localization system in the robot coordinate system can reach ±0.150 mm in the x- and y-directions and ±0.120° in the rotation angle. Moreover, this system completes two 18-megapixel image acquisitions, and the whole process takes around 570 ms to meet real production needs.


2021 ◽  
Vol 2021 (4) ◽  
pp. 469-479
Author(s):  
Alexey F. KOLOS ◽  
◽  
Ksenia I. IVANOVA ◽  

Objective: Experimental determination track modulus and the coeffi cient of relative stiffness of underrail base and the rail, which are the main elastic characteristics that determine the stresses in the structural elements of track superstructure under the impact force from the train. The values of these parameters for a track with a ballast layer are well studied, in contrast to a ballastless track. Comparison of the elastic characteristics of a ballastless railway track with analogs of a track on ballast, as well as an assessment of their effect on the stress-strain state of the superstructure elements of a ballastless track. Methods: When carrying out full-scale tests, strain-gauge methods for measuring stresses in the elements of the track superstructure were used. The obtained values were processed by the methods of mathematical statistics. One statistical series included the values of stresses corresponding to one type of rolling stock, fi xed axle load and train speed, changing by no more than 10 km/h. The probability level in processing the results was taken in all cases equal to 0,994. Results: The values of track modulus and the coeffi cient of the relative stiffness of the underrail base and the rail were obtained for a ballastless structure of the RHEDA 2000 type. Practical importance: The results allow us to consider the rail as a beam lying on a solid elastic foundation in relation to the ballastless track and use the existing calculation methods for the design of ballastless track structures depending on the operating conditions.


2021 ◽  
Vol 11 (21) ◽  
pp. 10400
Author(s):  
Weiqiang Guo ◽  
Xin Huang ◽  
Lijun Zhao ◽  
Ya Wei

The cast-in-place concrete base plate is a main member of the China Railway Track System (CRTS) III ballastless track structure that is prone to generating early transverse cracking. Such cracks can dramatically affect the performance and service life of the railway track structure. This study investigated the influence of temperature and moisture boundary conditions on early cracking behavior of the CRTS III base plate by using approaches of both in situ measurements and numerical modelling. In-site measurements of strain and temperature were made in four test series of CRTS III base plates under the same natural environmental condition but cured with different regimes, and a total of 96 measuring positions were monitored for up to 150 days. The results showed that the strain magnitude and distribution in the field base plate, the initial time at cracking, and the observed cracking pattern varied significantly between the different test series. In order to understand the mechanisms that create these transverse cracks and to provide guidelines for the current curing strategy during construction, the characteristics of temperature-induced and moisture-induced stresses were analyzed by using 3D numerical modelling and by considering early-age concrete creep properties, meteorological factors, and the influence from environmental boundary conditions. The calculated results revealed that early-age transverse cracking in CRTS III base plate depends more on drying shrinkage stress than temperature stress. By conducting this study, we expect to provide guidance for reducing or eliminating early cracks of CRTS III concrete base plate.


Sign in / Sign up

Export Citation Format

Share Document