scholarly journals Economics of Small Modular Reactors: Will They MakeNuclear Power More Competitive?

2021 ◽  
Vol 15 (6) ◽  
Author(s):  
Jan Bartak ◽  
Gianni Bruna ◽  
Gérard Cognet
2021 ◽  
Vol 159 ◽  
pp. 108346
Author(s):  
K. Podila ◽  
A. Colton ◽  
A. Trottier ◽  
P. Pfeiffer ◽  
Q. Chen ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2557
Author(s):  
Łukasz Bartela ◽  
Paweł Gładysz ◽  
Charalampos Andreades ◽  
Staffan Qvist ◽  
Janusz Zdeb

The near and mid-term future of the existing Polish coal-fired power fleet is uncertain. The longer-term operation of unabated coal power is incompatible with climate policy and is economically challenging because of the increasing price of CO2 emission allowances in the EU. The results of the techno-economic analysis presented in this paper indicate that the retrofit of existing coal-fired units, by means of replacing coal-fired boilers with small modular reactors, may be an interesting option for the Polish energy sector. It has been shown that the retrofit can reduce the costs in relation to greenfield investments by as much as 35%. This analysis focuses on the repowering of a 460 MW supercritical coal-fired unit based on the Łagisza power plant design with high temperature small modular nuclear reactors based on the 320 MWth unit design by Kairos Power. The technical analyses did not show any major difficulties in integrating. The economic analyses show that the proposed retrofits can be economically justified, and, in this respect, they are more advantageous than greenfield investments. For the base economic scenario, the difference in NPV (Net Present Value) is more favorable for the retrofit by 556.9 M€ and the discounted payback period for this pathway is 10 years.


Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


2019 ◽  
pp. 69-102
Author(s):  
Bahman Zohuri ◽  
Patrick McDaniel

Sign in / Sign up

Export Citation Format

Share Document