The Effect of the Grinding Time on the Mechanical Activation of MnO2 Ore and Tea Plant Waste Carbonization Product

Author(s):  
Mustafa BOYRAZLI ◽  
Elif ARANCI ÖZTÜRK ◽  
Yunus Emre BENKLİ
2019 ◽  
Vol 798 ◽  
pp. 235-241
Author(s):  
Chatcharin Vairojanakit ◽  
Sujarinee Sinchai

Cordierite is known as a leading candidate material for many applications. In this study, mechanical activation assisted synthesis of cordierite using andalusite as a starting material was attempted and phase formation of powder obtained from the heat treatment of talc-andalusite-silica system was investigated. The stoichiometric composition of cordierite (2MgO·2Al2O3·5SiO2) was prepared and ground in planetary ball mill at the rotational speed of 300 and 500 rpm for 0, 30, 60 and 90 min. The powder mixtures were heat treated in air at the temperature ranging from 1150 to 1350°C for 2 hours. Thermal reaction, phase present and microstructure of the starting materials and synthesized products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. It was found that cordierite phase increased with the grinding time and speed and synthesis temperature. The kinetics of phase formation in this system were also discussed.


2020 ◽  
Vol 6 (2) ◽  
pp. 73
Author(s):  
Demet Demir Şahin ◽  
Mustafa Çullu ◽  
Hasan Eker

Too much CO2 is released during cement production. In many researches, the use of natural or recycled compounds plays an important role in the cement composition. The use of these components contributes both to reducing the amount of waste and to protecting the environment in nature. It is possible to produce an environmentally friendly concrete, thanks to its being a fly ash thermal power plant waste and its use as mineral additive in terms of its composition. In this study, it is aimed to produce impermeable concretes with the use of C type fly ash as substitutes for cement in concrete composition in substitution rates of 10 %, 30 % and 50 %. In order to reduce the permeability of concrete in this direction, as a result of grinding the fly ash in the ball mill for 0, 10, 20, 30, 45 and 60 minutes, concrete samples were prepared with and without admixture (Reference). Capillarity test was performed to determine the permeability at the end of cure periods of 28 and 90 days on concrete samples. According to the results obtained at the end of 28 days, the best impermeability was achieved in the mixture with 50 % fly ash replacement and 60 minutes grinding time. In 90 days, the best impermeability was obtained in the mixture with 30 % fly ash replacement and 0 minutes of grinding time. As a result, it was seen that permeability decreased with increasing thinness and substitution rate of fly ash in concrete composition.


In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.


2018 ◽  
Vol 44 (3) ◽  
pp. 463 ◽  
Author(s):  
Zhang PENG ◽  
Hua-Rong TONG ◽  
Guo-Lu LIANG ◽  
Yi-Qi SHI ◽  
Lian-Yu YUAN

2015 ◽  
Vol 41 (2) ◽  
pp. 240 ◽  
Author(s):  
Chun-Lei MA ◽  
Ming-Zhe YAO ◽  
Xin-Chao WANG ◽  
Ji-Qiang JIN ◽  
Jian-Qiang MA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document