scholarly journals Prediction of Single Point Mutations in Human Coronavirus and Their Effects on Binding to 9-O-Acetylated Sialic Acid and Hidroxychloroquine

2020 ◽  
Vol 67 (3) ◽  
pp. 949-956
Author(s):  
Petar M. Mitrasinovic
2020 ◽  
Author(s):  
Petar M. Mitrasinovic

The infectious disease CoViD-19 is caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also referred to as hCoV-19. A possible infection mechanism includes dual host receptor recognitions by the SARS-CoV-2 transmembrane spike (S) glycoproteins. SARS-CoV-2 S contains two different domains, the receptor-binding domain (RBD) and the N-terminal domain (NTD), which interact with the angiotensin-converting enzyme 2 (ACE2) and the ganglioside-rich domain of the plasma membrane at the surface of respiratory cell, respectively. The NTD amino acid residues (111-162) form a functional ganglioside-binding domain (GBD) that is conserved in all clinical isolates. Herein, the single point mutations (SPMs) of the GBD residues to which the virus is prone during genetic adaptation are predicted using an in silico protein engineering approach. Consequently, their effects on the attachment of SARS-CoV-2 S to the ganglioside-linked 9-O-acetylated sialic acid (9-O-Ac-Sia) are explored using molecular docking simulations. Val120Tyr and Asn122Trp are found to be the most likely SPMs in the GBD of SARS-CoV-2 S being involved in very specific recognition with 9-O-Ac-Sia through electrostatic interactions. Val120Tyr and Asn122Trp are also found to be the most likely SPMs in the GBD of SARS-CoV-2 S that is involved in conspicuously hydrophobic recognition with hidroxychloroquine (Hcq), thereby indicating the ability of Hcq to competitively inhibit GBD interactions with lipid rafts. However, the considerably non-specific binding of Hcq and the micromolar range of the dissociation constants of the SARS-CoV-2 S/Hcq complexes do not support the proposal of treating Hcq as a drug candidate. Maintaining a clear resemblance of the structure of a potential drug candidate to a natural substrate, accompanied by essential functional group modifications, may be a usable guideline for the structure-based design of anti-CoViD-19 drugs.<br>


2020 ◽  
Author(s):  
Petar M. Mitrasinovic

The infectious disease CoViD-19 is caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also referred to as hCoV-19. A possible infection mechanism includes dual host receptor recognitions by the SARS-CoV-2 transmembrane spike (S) glycoproteins. SARS-CoV-2 S contains two different domains, the receptor-binding domain (RBD) and the N-terminal domain (NTD), which interact with the angiotensin-converting enzyme 2 (ACE2) and the ganglioside-rich domain of the plasma membrane at the surface of respiratory cell, respectively. The NTD amino acid residues (111-162) form a functional ganglioside-binding domain (GBD) that is conserved in all clinical isolates. Herein, the single point mutations (SPMs) of the GBD residues to which the virus is prone during genetic adaptation are predicted using an in silico protein engineering approach. Consequently, their effects on the attachment of SARS-CoV-2 S to the ganglioside-linked 9-O-acetylated sialic acid (9-O-Ac-Sia) are explored using molecular docking simulations. Val120Tyr and Asn122Trp are found to be the most likely SPMs in the GBD of SARS-CoV-2 S being involved in very specific recognition with 9-O-Ac-Sia through electrostatic interactions. Val120Tyr and Asn122Trp are also found to be the most likely SPMs in the GBD of SARS-CoV-2 S that is involved in conspicuously hydrophobic recognition with hidroxychloroquine (Hcq), thereby indicating the ability of Hcq to competitively inhibit GBD interactions with lipid rafts. However, the considerably non-specific binding of Hcq and the micromolar range of the dissociation constants of the SARS-CoV-2 S/Hcq complexes do not support the proposal of treating Hcq as a drug candidate. Maintaining a clear resemblance of the structure of a potential drug candidate to a natural substrate, accompanied by essential functional group modifications, may be a usable guideline for the structure-based design of anti-CoViD-19 drugs.<br>


2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

2017 ◽  
Vol 474 (18) ◽  
pp. 3189-3205 ◽  
Author(s):  
Ashoka Chary Taviti ◽  
Tushar Kant Beuria

Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC–FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD–FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.


2006 ◽  
Vol 340 (3) ◽  
pp. 792-799 ◽  
Author(s):  
Motofumi Tanaka ◽  
Motoko Nagano-Fujii ◽  
Lin Deng ◽  
Satoshi Ishido ◽  
Kiyonao Sada ◽  
...  

2007 ◽  
Vol 67 (4 suppl) ◽  
pp. 813-818 ◽  
Author(s):  
CS. Trinca ◽  
HF. Waldemarin ◽  
E. Eizirik

The Neotropical otter is one of the least known otter species, and it is considered to be threatened to various degrees throughout its geographic range. Little information exists on the ecological characteristics of this species, and no genetic study has been published about it until now, hampering the design of adequate conservation strategies for its populations. To contribute with genetic information to comprehensive conservation efforts on behalf of L. longicaudis, we characterized the molecular diversity of the 5’ portion of the mtDNA control region in samples from this species collected in Southern and Southeastern Brazil. The sequence analysis revealed a high level of haplotype diversity (h = 0.819; SE = 0.0052) and nucleotide variability ranging from 0.0039 to 0.0067. One of the sampled haplotypes was the most common in both regions and, from this sequence, several other (locally occurring) haplotypes could be derived by single point mutations. No significant genetic differentiation was observed between the Southern and Southeastern regions.


Sign in / Sign up

Export Citation Format

Share Document