scholarly journals Prediction of Single Point Mutations in Ganglioside-Binding Domain of SARS-CoV-2 S and Their Effects on Binding of 9-O-Acetylated Sialic Acid and Hidroxychloroquine

Author(s):  
Petar M. Mitrasinovic

The infectious disease CoViD-19 is caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also referred to as hCoV-19. A possible infection mechanism includes dual host receptor recognitions by the SARS-CoV-2 transmembrane spike (S) glycoproteins. SARS-CoV-2 S contains two different domains, the receptor-binding domain (RBD) and the N-terminal domain (NTD), which interact with the angiotensin-converting enzyme 2 (ACE2) and the ganglioside-rich domain of the plasma membrane at the surface of respiratory cell, respectively. The NTD amino acid residues (111-162) form a functional ganglioside-binding domain (GBD) that is conserved in all clinical isolates. Herein, the single point mutations (SPMs) of the GBD residues to which the virus is prone during genetic adaptation are predicted using an in silico protein engineering approach. Consequently, their effects on the attachment of SARS-CoV-2 S to the ganglioside-linked 9-O-acetylated sialic acid (9-O-Ac-Sia) are explored using molecular docking simulations. Val120Tyr and Asn122Trp are found to be the most likely SPMs in the GBD of SARS-CoV-2 S being involved in very specific recognition with 9-O-Ac-Sia through electrostatic interactions. Val120Tyr and Asn122Trp are also found to be the most likely SPMs in the GBD of SARS-CoV-2 S that is involved in conspicuously hydrophobic recognition with hidroxychloroquine (Hcq), thereby indicating the ability of Hcq to competitively inhibit GBD interactions with lipid rafts. However, the considerably non-specific binding of Hcq and the micromolar range of the dissociation constants of the SARS-CoV-2 S/Hcq complexes do not support the proposal of treating Hcq as a drug candidate. Maintaining a clear resemblance of the structure of a potential drug candidate to a natural substrate, accompanied by essential functional group modifications, may be a usable guideline for the structure-based design of anti-CoViD-19 drugs.<br>

2020 ◽  
Author(s):  
Petar M. Mitrasinovic

The infectious disease CoViD-19 is caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also referred to as hCoV-19. A possible infection mechanism includes dual host receptor recognitions by the SARS-CoV-2 transmembrane spike (S) glycoproteins. SARS-CoV-2 S contains two different domains, the receptor-binding domain (RBD) and the N-terminal domain (NTD), which interact with the angiotensin-converting enzyme 2 (ACE2) and the ganglioside-rich domain of the plasma membrane at the surface of respiratory cell, respectively. The NTD amino acid residues (111-162) form a functional ganglioside-binding domain (GBD) that is conserved in all clinical isolates. Herein, the single point mutations (SPMs) of the GBD residues to which the virus is prone during genetic adaptation are predicted using an in silico protein engineering approach. Consequently, their effects on the attachment of SARS-CoV-2 S to the ganglioside-linked 9-O-acetylated sialic acid (9-O-Ac-Sia) are explored using molecular docking simulations. Val120Tyr and Asn122Trp are found to be the most likely SPMs in the GBD of SARS-CoV-2 S being involved in very specific recognition with 9-O-Ac-Sia through electrostatic interactions. Val120Tyr and Asn122Trp are also found to be the most likely SPMs in the GBD of SARS-CoV-2 S that is involved in conspicuously hydrophobic recognition with hidroxychloroquine (Hcq), thereby indicating the ability of Hcq to competitively inhibit GBD interactions with lipid rafts. However, the considerably non-specific binding of Hcq and the micromolar range of the dissociation constants of the SARS-CoV-2 S/Hcq complexes do not support the proposal of treating Hcq as a drug candidate. Maintaining a clear resemblance of the structure of a potential drug candidate to a natural substrate, accompanied by essential functional group modifications, may be a usable guideline for the structure-based design of anti-CoViD-19 drugs.<br>


1994 ◽  
Vol 22 (21) ◽  
pp. 4520-4526 ◽  
Author(s):  
Yuri V. Postnikov ◽  
Donald A. Lehn ◽  
Richard C. Robinson ◽  
Fred K. Frideman ◽  
Joseph Shiloach ◽  
...  

2019 ◽  
Author(s):  
Nobutaka Fujieda ◽  
Miho Yuasa ◽  
Yosuke Nishikawa ◽  
Genji Kurisu ◽  
Shinobu Itoh ◽  
...  

Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded beta-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantio-selective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, in silico substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

2017 ◽  
Vol 474 (18) ◽  
pp. 3189-3205 ◽  
Author(s):  
Ashoka Chary Taviti ◽  
Tushar Kant Beuria

Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC–FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD–FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions.


2006 ◽  
Vol 340 (3) ◽  
pp. 792-799 ◽  
Author(s):  
Motofumi Tanaka ◽  
Motoko Nagano-Fujii ◽  
Lin Deng ◽  
Satoshi Ishido ◽  
Kiyonao Sada ◽  
...  

2020 ◽  
Author(s):  
Mohamed Raef Smaoui ◽  
Hamdi Yahyaoui

Abstract The interaction between the receptor-binding domain of the SARS-CoV-2 spike glycoprotein and the ACE2 enzyme is believed to be the entry point of the virus into various cells in the body, including the lungs, heart, liver, and kidneys. The current focus of several therapeutic design efforts explore attempts at affecting the binding interaction between the two proteins to limit the activity of the virus and disease progression. In this work, we analyze the stability of the spike protein under all possible single-point mutations in the receptor-binding domain and computationally explore mutations that can affect the binding with the ACE2 enzyme. We unravel the mutation landscape of the receptor region and assess the toxicity potential of single and multi-point mutations, generating insights for future vaccine efforts on potential mutations that might further stabilize the spike protein and increase its infectivity. We developed a tool, called SpikeMutator, to construct full atomic protein structures of the mutant spike proteins and shared a database of 3,800 single-point mutant structures. We analyzed the recent 65,000 reported spike sequences across the globe and observed the emergence of stable multi-point mutant structures. Using the landscape, we searched through 7.5 million possible 2-point mutation combinations and report that the (R355D K424E) mutation produces one of the strongest spike proteins that therapeutic efforts should investigate for the sake of developing an effective vaccine.


Sign in / Sign up

Export Citation Format

Share Document