scholarly journals Assessment of energy storage technologies for case studies with increased renewable energy penetration

2019 ◽  
Vol 4 (1) ◽  
pp. 001-014
Author(s):  
N Ntavarinos ◽  
P Davies ◽  
E Oterkus
Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 376 ◽  
Author(s):  
Ivan Pavić ◽  
Zora Luburić ◽  
Hrvoje Pandžić ◽  
Tomislav Capuder ◽  
Ivan Andročec

Battery energy storage systems (BESS) and renewable energy sources are complementary technologies from the power system viewpoint, where renewable energy sources behave as flexibility sinks and create business opportunities for BESS as flexibility sources. Various stakeholders can use BESS to balance, stabilize and flatten demand/generation patterns. These applications depend on the stakeholder role, flexibility service needed from the battery, market opportunities and obstacles, as well as regulatory aspects encouraging or hindering integration of storage technologies. While developed countries are quickly removing barriers and increasing the integration share of BESS, this is seldom the case in developing countries. The paper identifies multiple case opportunities for different power system stakeholders in Croatia, models potential BESS applications using real-world case studies, analyzes feasibility of these investments, and discusses financial returns and barriers to overcome.


2014 ◽  
Vol 1070-1072 ◽  
pp. 418-421 ◽  
Author(s):  
Jun Chen ◽  
Chun Lin Guo

With the reserves of coal and other fossil energy decreasing, renewable energy sources (RES) will become the main power source of future power system. In order to ensure stable supply of RES generation and to improve efficiency of system, energy storage technology will play a more and more important role in power system. In this paper, we discussed the importance and characteristics of various energy storage technologies with battery and super capacitor energy storage technology as examples. Then we elaborated the principles and important effects of energy storage technologies in RES generation. Finally, using PSCAD to build the simulation model of grid connected RES generation and storage technology to obtain the effect of energy storage technologies. Results show that the energy storage devices can effectively alleviate the fluctuation of RES.


2012 ◽  
Vol 462 ◽  
pp. 225-232 ◽  
Author(s):  
Rui Cao ◽  
Zi Long Yang

Today,there is a continuous need for more clean energy, this need has facilitated the increasing of distributed generation technology and renewable energy generation technology. In order to ensure the supply of renewable energy generation continuously and smoothly in distributed power generation system, need to configure a amount of energy storage system for storing excess power generated. This article outlines some energy storage technologies which are used in power systems in the current and future, summarizes the working principles and features of several storage units, provides the basis for the design of energy storage system.


2013 ◽  
Vol 805-806 ◽  
pp. 543-546
Author(s):  
Xiao Hui Chen ◽  
San Gao Hu ◽  
He Wang ◽  
Chang Hai Miao

Energy storage technology is a vital part of smart grid, and it can be utilized for grid-connection of renewable energy generation. In this paper, several kinds of energy storage technologies are introduced. Comparison of advantages and disadvantages of each technology is made, and the trend and development potentiality in China have been elaborated.


Energy ◽  
2018 ◽  
Vol 162 ◽  
pp. 988-1002 ◽  
Author(s):  
Kexin Wang ◽  
Shang Chen ◽  
Liuchen Liu ◽  
Tong Zhu ◽  
Zhongxue Gan

Author(s):  
Hilal Bahlawan ◽  
Agostino Gambarotta ◽  
Enzo Losi ◽  
Lucrezia Manservigi ◽  
MIrko Morini ◽  
...  

Abstract Hybrid energy plants, which include both fossil fuel technologies and renewable energy systems, can provide an important step towards a sustainable energy supply. In fact, the hybridization of renewable energy systems with gas turbines which are fed by fossil fuels allows an acceptable compromise, so that high fossil fuel efficiency and high share of renewables can be potentially achieved. Moreover, electrical and thermal energy storage systems increase the flexibility of the energy plant and effectively manage the variability of energy production and demand. This paper investigates the optimal sizing of a hybrid energy plant which combines an industrial gas turbine, renewable energy systems and energy storage technologies. The considered renewable energy system is a photovoltaic system, while the energy storage technologies are electrical energy storage and thermal energy storage. Moreover, a compression chiller and a gas boiler are also considered. For this purpose, the load profiles of electricity, heating and cooling during a whole year are taken into account for the case study of the Campus of the University of Parma (Italy). The sizing optimization problem of the different technologies composing the hybrid energy plant is solved by using a genetic algorithm, with the goal of minimizing primary energy consumption. Moreover, different operation strategies are analyzed and compared so that plant operation is also optimized. The results demonstrate that the optimal sizing of the hybrid energy plant, coupled with the optimized operation strategy, allows high average cogeneration efficiency (up to 84%), thus minimizing primary energy consumption.


Sign in / Sign up

Export Citation Format

Share Document