Enhancement of renewable energy penetration through energy storage technologies in a CHP-based energy system for Chongming, China

Energy ◽  
2018 ◽  
Vol 162 ◽  
pp. 988-1002 ◽  
Author(s):  
Kexin Wang ◽  
Shang Chen ◽  
Liuchen Liu ◽  
Tong Zhu ◽  
Zhongxue Gan
Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


2021 ◽  
Author(s):  
Enrico La Sorda ◽  
Francesco Pucci ◽  
Benjamin Mauries ◽  
Birgitte Storheim ◽  
Giorgio Arcangeletti

Abstract Reducing CO2 emissions is becoming one of the core targets for countries after the Paris agreement, which sets out a global framework to avoid dangerous climate change by limiting global warming to below 2°C and pursuing efforts to limit it to 1.5°C. To meet this objective also oil and gas operators have started to engage in an important effort to reduce the CO2 emissions in their plants and facilities. From this perspective Saipem developed its Wind2Sub, a Wind Power for Long Subsea Tie-Back (LSSTB) concept, where its own pendular floating foundation solution, namely Hexafloat, can host a wind turbine generator (WTG), all the utilities needed for subsea field development and operation (power distribution, chemical storage and injection, control system) and a back-up energy system to compensate the intermittent production due to wind persistence, currently a diesel generator (DG). The present paper will explore new solutions to ensure the continuity of the energy supply from Saipem Wins2Sub, based on green technologies. This may be done by collecting the generated surplus energy from a renewable energy system, in this case from WTG to a topside or subsea power storage. By adopting an Energy Storage System (ESS), it will be possible to use this energy when production from wind is low or null. This concept will replace the diesel generators, or any carbon fuel, so that the whole system will become green self-sustaining, as an energy island, without CO2 emissions. The activities performed during the concept development are articulated through the following steps: a selection of two typical oil field scenarios where Wind2Sub solution can be applicable; screening of the current technologies to store energy and a selection of those viable to the two selected scenarios; wind conditions and WTG power analysis with estimation of the amount of the energy to be stored; preliminary design of the ESS; preliminary cost estimation. The study was carried out by using a digital tool developed by Moss Maritime in the context of a Proof of Concept based on Floating energy storage. The tool allows to evaluate the feasibility of a solution through modellization of different renewable energy scenarios, demand profiles, simulation of operation, pre-sizing of the systems and cost estimation (LCOE, LCOS, LCOH). The ESS combined with Saipem Wind2Sub will be described more thoroughly in the present paper through the explanation of the results achieved within the case studies.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2955 ◽  
Author(s):  
Binod Prasad Koirala ◽  
Ellen van Oost ◽  
Henny van der Windt

With energy transition gaining momentum, energy storage technologies are increasingly spotlighted as they can effectively handle mismatches in supply and demand. The decreasing cost of distributed energy generation technologies and energy storage technologies as well as increasing demand for local flexibility is opening up new possibilities for the deployment of energy storage technologies in local energy communities. In this context, community energy storage has potential to better integrate energy supply and demand at the local level and can contribute towards accommodating the needs and expectations of citizens and local communities as well as future ecological needs. However, there are techno-economical and socio-institutional challenges of integrating energy storage technologies in the largely centralized present energy system, which demand socio-technical innovation. To gain insight into these challenges, this article studies the technical, demand and political articulations of new innovative local energy storage technologies based on an embedded case study approach. The innovation dynamics of two local energy storage innovations, the seasalt battery of DrTen® and the seasonal thermal storage Ecovat®, are analysed. We adopt a co-shaping perspective for understanding innovation dynamics as a result of the socio-institutional dynamics of alignment of various actors, their articulations and the evolving network interactions. Community energy storage necessitates thus not only technical innovation but, simultaneously, social innovation for its successful adoption. We will assess these dynamics also from the responsible innovation framework that articulates various forms of social, environmental and public values. The socio-technical alignment of various actors, human as well as material, is central in building new socio-technical configurations in which the new storage technology, the community and embedded values are being developed.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 376 ◽  
Author(s):  
Ivan Pavić ◽  
Zora Luburić ◽  
Hrvoje Pandžić ◽  
Tomislav Capuder ◽  
Ivan Andročec

Battery energy storage systems (BESS) and renewable energy sources are complementary technologies from the power system viewpoint, where renewable energy sources behave as flexibility sinks and create business opportunities for BESS as flexibility sources. Various stakeholders can use BESS to balance, stabilize and flatten demand/generation patterns. These applications depend on the stakeholder role, flexibility service needed from the battery, market opportunities and obstacles, as well as regulatory aspects encouraging or hindering integration of storage technologies. While developed countries are quickly removing barriers and increasing the integration share of BESS, this is seldom the case in developing countries. The paper identifies multiple case opportunities for different power system stakeholders in Croatia, models potential BESS applications using real-world case studies, analyzes feasibility of these investments, and discusses financial returns and barriers to overcome.


Author(s):  
Tomonori Goya ◽  
Kosuke Uchida ◽  
Yoshihisa Kinjyo ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
...  

Nowadays, renewable energy systems such as wind turbine generators and photovoltaic systems are introduced to power systems. However, the renewable energy system is influenced by weather conditions, and the generated power of the renewable energy system is deviated. For the provision of deviated power, the battery energy storage system is introduced to suppress the deviation of the frequency and voltage in power system. However, it needs the large capacity of a battery system, which increases the capital cost. In this paper, we propose a coordinated control strategy between the diesel generator and the battery system to reduce the capital cost of battery, inverter capacity and storage capacity. The proposed control system incorporates the H-infinity control theory, which enables intuitive controller design in frequency domain. Effectiveness of the proposed control system is validated by simulation results.


2014 ◽  
Vol 1070-1072 ◽  
pp. 418-421 ◽  
Author(s):  
Jun Chen ◽  
Chun Lin Guo

With the reserves of coal and other fossil energy decreasing, renewable energy sources (RES) will become the main power source of future power system. In order to ensure stable supply of RES generation and to improve efficiency of system, energy storage technology will play a more and more important role in power system. In this paper, we discussed the importance and characteristics of various energy storage technologies with battery and super capacitor energy storage technology as examples. Then we elaborated the principles and important effects of energy storage technologies in RES generation. Finally, using PSCAD to build the simulation model of grid connected RES generation and storage technology to obtain the effect of energy storage technologies. Results show that the energy storage devices can effectively alleviate the fluctuation of RES.


Sign in / Sign up

Export Citation Format

Share Document