scholarly journals IN VITRO EFFECTS OF ENDOCRINE DISRUPTING CHEMICALS ON THE GONADAL STEROIDOGENESIS IN AN INDIAN MAJOR CARP, LABEO ROHITA (HAM.)

2011 ◽  
Vol 4 (is1) ◽  
pp. 252-252
Author(s):  
Magadalenal N. N
2015 ◽  
Vol 27 (1) ◽  
pp. 199
Author(s):  
J.-H. Lee ◽  
E.-B. Jeung

The placenta exchanges vital factors, including oxygen, carbon dioxide, copper, iron, calcium cations, and glucose, which are essential to fetal growth. Each molecule is transferred by specific receptors that are located at the cell membrane or in the cytoplasm. Copper, iron, calcium cations, and glucose transfer genes are regulated by estrogens, vitamin D, and human placental lactogen. Regulations of these receptors depend on pregnancy time length and maternal and fetal nutrient environment with various pathways. Some synthetic plastics known as endocrine disrupting chemicals (EDC) have a similar structure to reproductive hormones such as estrogens. Thus, these substances have a potential effect on the expression of genes which are regulated by estrogens or progesterone by interfering their pathways. Having an estrogenic property, EDC interact with oestrogen receptors and elevate or decrease the expression of target genes which are responsible for transporting essential molecules such as copper, iron, and calcium. To examine the effects of EDC exposure during pregnancy, we conducted an in vitro model study using the BeWo human trophoblast cell line. The BeWo cell was treated with well-known EDC, octyl-phenol (OP), nonyl-phenol (NP), and bisphenol A (BPA) in a dose-dependent manner (10–7, 10–6, and 10–5 M) for 24 h. The expression of copper (CTR1, ATP7A), iron (IREG1, HEPH), and calcium transporting genes (PMCA1, TRPV6), were measured by real-time RT–PCR and Western blot. The expression of copper, iron, and calcium transporting genes were elevated in a dose-dependent manner by all well-known EDC, including OP, NP, and BPA, as well as E2. To unveil the mechanism of these elevations of ionic transporting genes, an ERE promoter study will be needed. Taken together, essential cation transporting genes in placenta are modulated by EDC.


2012 ◽  
Vol 27 (4) ◽  
pp. 1025-1033 ◽  
Author(s):  
Evi M.L. Petro ◽  
Jo L.M.R. Leroy ◽  
Adrian Covaci ◽  
Erik Fransen ◽  
Diane De Neubourg ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Gwenneg Kerdivel ◽  
Denis Habauzit ◽  
Farzad Pakdel

In all vertebrate species, estrogens play a crucial role in the development, growth, and function of reproductive and nonreproductive tissues. A large number of natural or synthetic chemicals present in the environment and diet can interfere with estrogen signaling; these chemicals are called endocrine disrupting chemicals (EDCs) or xenoestrogens. Some of these compounds have been shown to induce adverse effects on human and animal health, and some compounds are suspected to contribute to diverse disease development. Because xenoestrogens have varying sources and structures and could act in additive or synergistic effects when combined, they have multiple mechanisms of action. Consequently, an important panel ofin vivoandin vitrobioassays and chemical analytical tools was used to screen, evaluate, and characterize the potential impacts of these compounds on humans and animals. In this paper, we discuss different molecular actions of some of the major xenoestrogens found in food or the environment, and we summarize the current models used to evaluate environmental estrogens.


2017 ◽  
Author(s):  
Lucas Marques da Cunha ◽  
Anshu Uppal ◽  
Emily Seddon ◽  
David Nusbaumer ◽  
Etienne L. M. Vermeirssen ◽  
...  

AbstractEndocrine disrupting chemicals are a threat to natural fish populations in the aquatic environment. Their toxicity is usually discussed relative to concentrations in the water the fish are exposed to. In the case of the synthetic compound 17-alpha-ethynylestradiol (EE2), a common and persistent estrogen, concentrations around 1 ng/L have repeatedly been found to induce toxic effects in fish. Here, we used brown trout (Salmo trutta) from a natural population to study EE2 take up and how it affects early life-history. We collected adults during the spawning season, produced 730 families in vitro (to control for potential maternal and paternal effects on embryo stress tolerance), and singly raised 7,300 embryos (in a 2 mL static system) that were either exposed to one dose of EE2 at 1 ng/L (i.e., 2 pg/embryo) or sham-treated. We found that EE2 concentration did not significantly change over a period of 3 months in control containers without embryos. Embryos took up most of the 2 pg EE2 within about 4 weeks at 4.6°C. EE2 treated embryos experienced higher mortality, delayed hatching of the survivors, and had reduced size at hatching. Our findings suggest that the toxicity of EE2 is often underestimated when discussed at the level of concentrations in water only.


2012 ◽  
Vol 03 (08) ◽  
pp. 902-914 ◽  
Author(s):  
Karthryn M. Quinn-Hosey ◽  
James J. Roche ◽  
Andrew M. Fogarty ◽  
Concepta A. Brougham

Sign in / Sign up

Export Citation Format

Share Document