scholarly journals Electrochemical Study of the Reduction of Levulinic Acid in Acetonitrile on Various Electrodes

2021 ◽  
Vol 14 (4) ◽  
pp. 552-560
Author(s):  
Galina V. Burmakina ◽  
◽  
Dmitry V. Zimonin ◽  
Victor V. Verpekin ◽  
Anatoly I. Rubaylo

The reduction of levulinic acid by electrochemical methods in acetonitrile with or without proton donor on platinum, rhodium, glassy carbon, dropping mercury, iron, copper and lead electrodes were studied. The reduction of levulinic acid was shown to depend on the nature of electrode material and to proceed according to either electrocatalytic or electrochemical mechanisms

2021 ◽  
Vol 14 (3) ◽  
pp. 388-395
Author(s):  
Galina V. Burmakina ◽  

The redox properties of levulinic acid (LA) were studied by electrochemical methods in acetonitrile, a mixture of acetonitrile with water, ethanol, acetone, and dimethyl sulfoxide. It was shown that the irreversible two-electron reduction of LA under the studied conditions leads to the formation of γ-valerolactone. This reduction potential depends on the solvent and shifted anodically by following order: dimethyl sulfoxide


Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


2016 ◽  
Vol 216 ◽  
pp. 528-534 ◽  
Author(s):  
Shuangyan Liu ◽  
Yongmei Chen ◽  
Pingyu Wan ◽  
Chen Zhou ◽  
Sheng Zhang ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (67) ◽  
pp. 39055-39063 ◽  
Author(s):  
Xuan Li ◽  
Pei Zhang ◽  
Huiju Huang ◽  
Xiaochen Hu ◽  
Yong Zhou ◽  
...  

In this study, the influences of different pH values on the corrosion and passivation behaviors of a Q235 carbon steel in HNO3–NaNO2, HAc–NaNO2 and HCl–NaNO2 solutions were studied by electrochemical methods.


2011 ◽  
Vol 493-494 ◽  
pp. 896-901
Author(s):  
María Canillas ◽  
Ann Rajnicek ◽  
C. Rosero ◽  
Eva Chinarro ◽  
Berta Moreno

The biocompatibility of TiO2 is due to the activity that it shown in front of oxygen and nitrogen reactive species. Some authors suggest that the mechanism go through oxidation reduction reactions where changes of oxidation state in the Titanium and phases are involve. For this reason, Anderson-Magnelli phases could present scavenging activity. Moreover, these materials are use as electrodes and in that way are proposed as electrodes for study their scavenging mechanism by electrochemical methods.


2013 ◽  
Vol 718-720 ◽  
pp. 124-126
Author(s):  
Dan Zi Sun

9, 10-Phenanthrenequinone (PQ) supported on glassy carbon microparticles by adsorption was dispersed in methyltrimethoxysilane (MTMOS) derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified glassy carbon ceramic composite electrode. It shows good electrocatalytic activity toward the reduction of iodate and could be used as an amperometric sensor for the determination of iodate in table warter.


Sign in / Sign up

Export Citation Format

Share Document