scholarly journals The Impact of Different Types of Orthodontic Appliances and Its Location in Producing CT Scan Artefacts

2021 ◽  
Vol 50 (10) ◽  
pp. 3067-3075
Author(s):  
Mahmud Mohammed ◽  
Norma Ab. Rahman ◽  
Ahmad Hadif Zaidin Samsudin

Fixed orthodontic appliances can produce metal artefacts in CT images which may degrade the diagnostic image quality. The study aimed to evaluate the artefacts based on the types and location of the metallic and non-metallic orthodontic brackets. This is an in-vitro cross-sectional study. Four different types of orthodontic brackets (stainless steel, titanium, monocrystalline, and polycrystalline ceramic bracket) were bonded consecutively in four different locations of the cadaveric skull. All scans were performed by a single operator using the same CT machine followed by a standard scanning protocol. Artefact intensity for all data sets was quantified by calculating the standard deviation (SD) of the grey values within the dataset by following a standard method. The One-way ANOVA Bonferroni test was used for the data analysis. The mean artefact score of the stainless steel bracket was significantly (p < 0.001) high in comparison with other types of the orthodontic brackets. Besides, the mean artefact score was significantly (p=0.002) low when orthodontic brackets were placed unilaterally. Stainless steel brackets produced a significant amount of noise in CT images which can degrade the diagnostic image quality. Thus, the polycrystalline ceramic bracket can be a better alternative of stainless steel brackets for patient need frequent CT scan.

2021 ◽  
Vol 58 (4) ◽  
pp. 0-0
Author(s):  
Praveen Kumar Neela ◽  
Venkat Kishan ◽  
Mohammed Wahajuddin Syed ◽  
Pavan Kumar Mamillapalli ◽  
Vasu Murthy Sesham ◽  
...  

2018 ◽  
Author(s):  
Melanie U Knopp ◽  
Katherine Binzel ◽  
Chadwick L Wright ◽  
Jun Zhang ◽  
Michael V Knopp

BACKGROUND Conventional approaches to improve the quality of clinical patient imaging studies focus predominantly on updating or replacing imaging equipment; however, it is often not considered that patients can also highly influence the diagnostic quality of clinical imaging studies. Patient-specific artifacts can limit the diagnostic image quality, especially when patients are uncomfortable, anxious, or agitated. Imaging facility or environmental conditions can also influence the patient’s comfort and willingness to participate in diagnostic imaging studies, especially when performed in visually unesthetic, anxiety-inducing, and technology-intensive imaging centers. When given the opportunity to change a single aspect of the environmental or imaging facility experience, patients feel much more in control of the otherwise unfamiliar and uncomfortable setting. Incorporating commercial, easily adaptable, ambient lighting products within clinical imaging environments allows patients to individually customize their environment for a more personalized and comfortable experience. OBJECTIVE The aim of this pilot study was to use a customizable colored light-emitting diode (LED) lighting system within a clinical imaging environment and demonstrate the feasibility and initial findings of enabling healthy subjects to customize the ambient lighting and color. Improving the patient experience within clinical imaging environments with patient-preferred ambient lighting and color may improve overall patient comfort, compliance, and participation in the imaging study and indirectly contribute to improving diagnostic image quality. METHODS We installed consumer-based internet protocol addressable LED lights using the ZigBee standard in different PET/CT scan rooms within a clinical imaging environment. We recruited healthy volunteers (n=35) to generate pilot data in order to develop a subsequent clinical trial. The visual perception assessment procedure utilized questionnaires with preprogrammed light/color settings and further assessed how subjects preferred ambient light and color within a clinical imaging setting. RESULTS Technical implementation using programmable LED lights was performed without any hardware or electrical modifications to the existing clinical imaging environment. Subject testing revealed substantial variabilities in color perception; however, clear trends in subject color preference were noted. In terms of the color hue of the imaging environment, 43% (15/35) found blue and 31% (11/35) found yellow to be the most relaxing. Conversely, 69% (24/35) found red, 17% (6/35) found yellow, and 11% (4/35) found green to be the least relaxing. CONCLUSIONS With the majority of subjects indicating that colored lighting within a clinical imaging environment would contribute to an improved patient experience, we predict that enabling patients to customize environmental factors like lighting and color to individual preferences will improve patient comfort and patient satisfaction. Improved patient comfort in clinical imaging environments may also help to minimize patient-specific imaging artifacts that can otherwise limit diagnostic image quality. CLINICALTRIAL ClinicalTrials.gov NCT03456895; https://clinicaltrials.gov/ct2/show/NCT03456895


2018 ◽  
Vol 20 (2) ◽  
pp. 1202-1213 ◽  
Author(s):  
Tomas Budrys ◽  
Vincentas Veikutis ◽  
Saulius Lukosevicius ◽  
Rymante Gleizniene ◽  
Egle Monastyreckiene ◽  
...  

2017 ◽  
Vol 106 (7) ◽  
pp. 485-492 ◽  
Author(s):  
Marco M. Ochs ◽  
Fabian aus dem Siepen ◽  
Thomas Fritz ◽  
Florian Andre ◽  
Gitsios Gitsioudis ◽  
...  

2016 ◽  
Vol 25 (4) ◽  
pp. 230-234
Author(s):  
Wai-Yung Yu ◽  
Thye Sin Ho ◽  
Henry Ko ◽  
Wai-Yee Chan ◽  
Serene Ong ◽  
...  

Introduction: The use of computed tomography (CT) imaging as a diagnostic modality is increasing rapidly and CT is the dominant contributor to diagnostic medical radiation exposure. The aim of this project was to reduce the effective radiation dose to patients undergoing cranial CT examination, while maintaining diagnostic image quality. Methods: Data from a total of 1003, 132 and 27 patients were examined for three protocols: CT head, CT angiography (CTA), and CT perfusion (CTP), respectively. Following installation of adaptive iterative dose reduction (AIDR) 3D software, tube current was lowered in consecutive cycles, in a stepwise manner and effective radiation doses measured at each step. Results: Baseline effective radiation doses for CT head, CTA and CTP were 1.80, 3.60 and 3.96 mSv, at currents of 300, 280 and 130–150 mA, respectively. Using AIDR 3D and final reduced currents of 160, 190 and 70–100 mA for CT head, CTA and CTP gave effective doses of 1.29, 3.18 and 2.76 mSv, respectively. Conclusion: We demonstrated that satisfactory reductions in the effective radiation dose for CT head (28.3%), CTA (11.6%) and CTP (30.1%) can be achieved without sacrificing diagnostic image quality. We have also shown that iterative reconstruction techniques such as AIDR 3D can be effectively used to help reduce effective radiation dose. The dose reductions were performed within a short period and can be easily achievable, even in busy departments.


1999 ◽  
Vol 72 (853) ◽  
pp. 55-61 ◽  
Author(s):  
A Lowe ◽  
A Finch ◽  
D Boniface ◽  
R Chaudhuri ◽  
J Shekhdar

2007 ◽  
Vol 77 (6) ◽  
pp. 1090-1095 ◽  
Author(s):  
William Papaioannou ◽  
Sotiria Gizani ◽  
Maria Nassika ◽  
Efterpi Kontou ◽  
Melachrini Nakou

Abstract Objective: To examine the difference in the adhesion of Streptococcus mutans to three different types of orthodontic brackets and the effect of the presence of an early salivary pellicle and Streptococcus sanguis on adhesion. Materials and Methods: Three adhesion experiments were performed using stainless steel, ceramic, and plastic orthodontic brackets. In the first experiment a clinical strain of S mutans adhered to the three different types of brackets (n = 6 for each). For the second, the brackets were treated with saliva before adhesion of S mutans (n = 6 per type of bracket). Finally, the third experiment concerned saliva coated brackets (n = 6 per type of bracket), but before S mutans, S sanguis bacteria were allowed to adhere. The bacteria were always allowed to adhere for 90 minutes in all the experiments. Adhesion was quantitated by a microbial culture technique by treating the brackets with adhering bacteria with trypsin and enumerating the total viable counts of bacteria recovered after cultivation. Results: There were consistently no differences in the adherence to stainless steel, ceramic, or plastic brackets. The presence of an early salivary pellicle and S sanguis reduced the number of adhering S mutans to all three types of brackets. Conclusions: Adhesion of bacteria to orthodontic brackets depends on several factors. The presence of a salivary pellicle and other bacterial species seem to have a significant effect on the adhesion of S mutans, reducing their numbers and further limiting any differences between types of brackets.


Sign in / Sign up

Export Citation Format

Share Document