Methods of gold recovery during the concentration of refractory gold-bearing pyritic copper-zinc ores. Part 1. Analysis of practice and choice of ways of selective recovery of mineral phases of gold from pyritic copper-zinc ores

2017 ◽  
pp. 11-16
Author(s):  
V. A. Bocharov ◽  
◽  
V. A. Ignatkina ◽  
A. A. Kayumov ◽  
◽  
...  
Author(s):  
P. K. Fedotov ◽  
A. E. Senchenko ◽  
K. V. Fedotov ◽  
A. E. Burdonov

The paper focuses on the study of the gold-bearing ore dressability. According to technological research, the average gold content is 11.88 g/t. The silver content is insignificant – 2.43 g/t. Main ore minerals in the sample are pyrite and pyrrhotite. According to mineralogical and X-ray structural analysis, the average content of these minerals in the ore is about 6 % (in total). Main rock-forming minerals of the original ore are: quartz (60.1 %), quartz-chlorite-mica aggregates (3.8 %), carbonates (7.1 %). According to the study results, it was found that the gold recovery in the GRG test was 72.75 % with a total concentrate yield of 1.34 % and a content of 664.78 g/t. At the same time, the gold content in tailings was 3.29 g/t. A stage test showed that it is advisable to use a two-stage scheme for ore processing by gravity technology only. The first stage is in the grinding cycle with the 60–70 % ore size, and the second stage is with the final classifier overflow size of 90 % –0.071 mm. Centrifugal separation has high performance as a free gold recovery operation in the grinding cycle. A concentrate with a gold content of 2426 g/t was obtained with a yield of 0.31 % and a recovery of 63.74 %. The beneficiation of first stage tailings ground to 90 % –0.071 mm at the KC-CVD concentrator (modeling) made it possible to extract gold into a total gravity concentrate (KC-MD + KC-CVD) of 87.25 % with a concentrate yield of 22.63 %. The gold content in tailings was 1.97 g/t. The results of gravity and flotation concentration of the original ore indicate the feasibility of using a combined gravity-flotation technological scheme. In a closed experiment of the initial ore beneficiation according to the gravity-flotation scheme at a natural pH of the pulp (without adding acid), the following products were obtained: gravity concentrate with a gold content of 2426 g/t at a yield of 0.31 % and recovery of 64.06 %; flotation concentrate (after the II cleaning) with a gold content of 122 g/t at a yield of 2.90 % and recovery of 33.01 %; the total gold recovery in the gravity-flotation concentrate was 94.07 % with a yield of 3.21 % and an Au content of 345.87 g/t, the gold content in the flotation tailings was 0.72 g/t.


2010 ◽  
Vol 101 (1-2) ◽  
pp. 28-34 ◽  
Author(s):  
Natal'ya V. Fomchenko ◽  
Maxim I. Muravyov ◽  
Tamara F. Kondrat'eva

2019 ◽  
Vol 25 (3) ◽  
pp. 456-477 ◽  
Author(s):  
Heini Elomaa ◽  
Pia Sinisalo ◽  
Lotta Rintala ◽  
Jari Aromaa ◽  
Mari Lundström

Abstract Purpose Currently, almost all cyanide-free gold leaching processes are still in the development stage. Proactively investigating their environmental impacts prior to commercialization is of utmost importance. In this study, a detailed refractory gold concentrate process simulation with mass and energy balance was built for state-of-the-art technology with (i) pressure oxidation followed by cyanidation and, compared to alternative cyanide-free technology, with (ii) pressure oxidation followed by halogen leaching. Subsequently, the simulated mass balance was used as life cycle inventory data in order to evaluate the environmental impacts of the predominant cyanidation process and a cyanide-free alternative. Methods The environmental indicators for each scenario are based on the mass balance produced with HSC Sim steady-state simulation. The simulated mass balances were evaluated to identify the challenges in used technologies. The HSC Sim software is compatible with the GaBi LCA software, where LCI data from HSC-Sim is directly exported to. The simulation produces a consistent life cycle inventory (LCI). In GaBi LCA software, the environmental indicators of global warming potential (GWP), acidification potential (AP), terrestrial eutrophication potential (EP), and water depletion (Water) are estimated. Results and discussion The life cycle assessment revealed that the GWP for cyanidation was 10.1 t CO2-e/kg Au, whereas the halogen process indicated a slightly higher GWP of 12.6 t CO2-e/kg Au. The difference is partially explained by the fact that the footprint is calculated against produced units of Au; total recovery by the halogen leaching route for gold was only 87.3%, whereas the cyanidation route could extract as much as 98.5% of gold. The addition of a second gold recovery unit to extract gold also from the washing water in the halogen process increased gold recovery up to 98.5%, decreasing the GWP of the halogen process to 11.5 t CO2-e/kg Au. However, both evaluated halogen processing scenarios indicated a slightly higher global warming potential when compared to the dominating cyanidation technology. Conclusions The estimated environmental impacts predict that the development-stage cyanide-free process still has some challenges compared to cyanidation; as in the investigated scenarios, the environmental impacts were generally higher for halogen leaching. Further process improvements, for example in the form of decreased moisture in the feed for halide leaching, and the adaptation of in situ gold recovery practices in chloride leaching may give the cyanide-free processing options a competitive edge.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1216
Author(s):  
Rui Xu ◽  
Qian Li ◽  
Feiyu Meng ◽  
Yongbin Yang ◽  
Bin Xu ◽  
...  

Carbonaceous sulfidic gold ores are commonly double refractory and thus require pretreatment before gold extraction. In this paper, the capacity of pre-bio-oxidation can simultaneously decompose sulfides or deactivate carbonaceous matters (CM) from a double refractory gold ore (DRGO) using pure cultures of A. ferrooxidans or L. ferrooxidans, and a mixed culture containing A. ferrooxidans and L. ferrooxidans was investigated. The results showed that direct thiourea leaching of the as-received DRGO yielded only 28.7% gold extraction, which was due to the encapsulation of sulfides on gold and the gold adsorption of CM. After bio-oxidation, thiourea leaching of the DRGO resulted in gold extraction of over 75–80%. Moreover, bio-oxidation can effectively reduce the adsorption of carbon to gold. XRD, SEM-EDS and FTIR analysis showed that many oxygen-containing groups were introduced on the surface of DRGO during bio-oxidation, while the C=C bond was cleaved and the O–C–O and C–N bonds were degraded, causing a decrease in active sites for gold adsorption. Moreover, passivation materials such as jarosite were formed on the surface of DRGO, which might reduce the affinity of CM for gold in solutions. In addition, the cleavage of the S–S band indicated that sulfides were oxidized by bacteria. This work allows us to explain the applicability of pre-bio-oxidation for degrading both sulfides and CM and increasing gold recovery from DRGO in the thiourea system.


1993 ◽  
Vol 11 (1-3) ◽  
pp. 243-252 ◽  
Author(s):  
J.T. Chapman ◽  
P.B. Marchant ◽  
R.W. Lawrence ◽  
R. Knopp

Sign in / Sign up

Export Citation Format

Share Document