oxidation level
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 41)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Stanislav Nešpůrek ◽  
Petr Kuberský ◽  
Radek Polanský ◽  
Miroslava Trchová ◽  
Jakub Šebera ◽  
...  

The oxidation level of the conductive polymer PEDOT:PSS is influenced by an electrostatic field of ionic liquid.


2021 ◽  
Vol 22 (19) ◽  
pp. 10578
Author(s):  
Tao Jiang ◽  
Carlo Alberto Amadei ◽  
Yishan Lin ◽  
Na Gou ◽  
Sheikh Mokhlesur Rahman ◽  
...  

The mass production of graphene oxide (GO) unavoidably elevates the chance of human exposure, as well as the possibility of release into the environment with high stability, raising public concern as to its potential toxicological risks and the implications for humans and ecosystems. Therefore, a thorough assessment of GO toxicity, including its potential reliance on key physicochemical factors, which is lacking in the literature, is of high significance and importance. In this study, GO toxicity, and its dependence on oxidation level, elemental composition, and size, were comprehensively assessed. A newly established quantitative toxicogenomic-based toxicity testing approach, combined with conventional phenotypic bioassays, were employed. The toxicogenomic assay utilized a GFP-fused yeast reporter library covering key cellular toxicity pathways. The results reveal that, indeed, the elemental composition and size do exert impacts on GO toxicity, while the oxidation level exhibits no significant effects. The UV-treated GO, with significantly higher carbon-carbon groups and carboxyl groups, showed a higher toxicity level, especially in the protein and chemical stress categories. With the decrease in size, the toxicity level of the sonicated GOs tended to increase. It is proposed that the covering and subsequent internalization of GO sheets might be the main mode of action in yeast cells.


2021 ◽  
Author(s):  
Emmy Järsvall ◽  
Sepideh Zokaei ◽  
Till Biskup ◽  
Stephen Barlow ◽  
Seth R. Marder ◽  
...  

2021 ◽  
Vol 21 (17) ◽  
pp. 13019-13029
Author(s):  
Fan Mei ◽  
Jian Wang ◽  
Shan Zhou ◽  
Qi Zhang ◽  
Sonya Collier ◽  
...  

Abstract. Cloud condensation nuclei (CCN) spectrum and the CCN activated fraction of size-resolved aerosols (SR-CCN) were measured at a rural site on Long Island during the Department of Energy (DOE) aerosol life cycle intensive operational period (ALC-IOP) from 15 July to 15 August 2011. During the last week of the ALC-IOP, the dependence of the activated fraction on aerosol volatility was characterized by sampling downstream of a thermodenuder (TD) operated at temperatures up to 100 ∘C. Here we present aerosol properties, including aerosol total number concentration, CCN spectrum, and the CCN hygroscopicity, for air masses of representative origins during the ALC-IOP. The hygroscopicity of organic species in the aerosol is derived from CCN hygroscopicity and chemical composition. The dependence of organic hygroscopicity on the organic oxidation level (e.g., atomic O:C ratio) agrees well with theoretical predictions and results from previous laboratory and field studies. The derived κorg and O:C ratio first increase as TD temperature increases from 20 ∘C (i.e., ambient temperature) to 50 or 75 ∘C and then decrease as TD temperature further increases to 100 ∘C. The initial increases of O:C and κorg with TD temperature below 50 ∘C are likely due to evaporation of more volatile organics with relatively lower O:C and hygroscopicity such as primary organic aerosol. At the high TD temperatures, the decreases of O:C and κorg indicate that evaporated organics were more oxygenated and had lower molecular weights. These trends are different from previous laboratory experiments and field observations, which reported that organic O:C increased monotonically with increasing TD temperature, whereas κorg decreased with the TD temperature. One possible reason is that previous studies were either focused on laboratory-generated secondary organic aerosol (SOA) or based on field observations at locations more dominated by SOA.


2021 ◽  
Vol 21 (15) ◽  
pp. 11545-11562
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and initial α-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or −15 ∘C; and at changing temperatures (ramps) from −15 to 20 and from 20 to −15 ∘C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 ∘C). A higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 or −15 ∘C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 ∘C are more comparable to particles formed at −15 ∘C than to those formed at 20 ∘C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.


2021 ◽  
Vol 21 (13) ◽  
pp. 10375-10391
Author(s):  
Ye Kuang ◽  
Shan Huang ◽  
Biao Xue ◽  
Biao Luo ◽  
Qicong Song ◽  
...  

Abstract. Water uptake abilities of organic aerosol under sub-saturated conditions play critical roles in direct aerosol radiative effects and atmospheric chemistry; however, field characterizations of the organic aerosol hygroscopicity parameter κOA under sub-saturated conditions remain limited. In this study, a field campaign was conducted to characterize κOA at a relative humidity of 80 % with hourly time resolution for the first time in the Pearl River Delta region of China. Observation results show that, during this campaign, secondary organic aerosol (SOA) dominated total organic aerosol mass (mass fraction > 70 % on average), which provides a unique opportunity to investigate influences of SOA formation on κOA. Results demonstrate that the commonly used organic aerosol oxidation level parameter O/C was weakly correlated with κOA and failed to describe the variations in κOA. However, the variations in κOA were well reproduced by mass fractions of organic aerosol factor resolved based on aerosol mass spectrometer measurements. The more oxygenated organic aerosol (MOOA) factor, exhibiting the highest average O/C (∼ 1) among all organic aerosol factors, was the most important factor driving the increase in κOA and was commonly associated with regional air masses. The less oxygenated organic aerosol (LOOA; average O/C of 0.72) factor revealed strong daytime production, exerting negative effects on κOA. Surprisingly, the aged biomass burning organic aerosol (aBBOA) factor also formed quickly during daytime and shared a similar diurnal pattern with LOOA but had much lower O/C (0.39) and had positive effects on κOA. The correlation coefficient between κOA and mass fractions of aBBOA and MOOA in total organic aerosol mass reached above 0.8. The contrasting effects of LOOA and aBBOA formation on κOA demonstrate that volatile organic compound (VOC) precursors from diverse sources and different SOA formation processes may result in SOA with different chemical composition, functional properties and microphysical structure, consequently exerting distinct influences on κOA and rendering single oxidation level parameters (such as O/C) unable to capture those differences. Aside from that, distinct effects of aBBOA on κOA were observed during different episodes, suggesting that the hygroscopicity of SOA associated with similar sources might also differ much under different emission and atmospheric conditions. Overall, these results highlight that it is imperative to conduct more research on κOA characterization under different meteorological and source conditions and examine its relationship with VOC precursor profiles and formation pathways to formulate a better characterization and develop more appropriate parameterization approaches in chemical and climate models.


Carbon ◽  
2021 ◽  
Author(s):  
E.A. Chernova ◽  
D.I. Petukhov ◽  
A.P. Chumakov ◽  
A.V. Kirianova ◽  
I.S. Sadilov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document