scholarly journals Mitochondrial Genetic Diversity and Population Structure of the Amur Sleeper (Perccottus glenii) in Northeast China

2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Peimin Yang ◽  
Zongyun Hu ◽  
Yixin Liu ◽  
Guanghai Jin ◽  
Lei Wang
Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 868-874
Author(s):  
J. X. Liu ◽  
Y. N. Cai ◽  
W. Y. Jiang ◽  
Y. G. Li ◽  
Q. F. Zhang ◽  
...  

Rice seedling blight, which is caused by diverse pathogenic microorganisms, occurs worldwide and is the most important seedling disease affecting rice production in Northeast China. To further characterize the population structure and genetic diversity of the fungi responsible for rice seedling blight in Northeast China, 225 fungal strains were isolated from diseased rice seedlings collected from various rice-producing areas. The isolated strains included Fusarium oxysporum (48.0%), F. verticillioides (11.6%), F. tricinctum (8.0%), F. redolens (6.7%), F. equiseti (6.2%), F. solani (6.2%), Rhizoctonia solani (6.7%), Alternaria alternata (4.0%), and Curvularia coatesiae (2.7%). F. oxysporum was the dominant fungal species causing rice seedling blight, with most isolates exhibiting moderate pathogenicity. Moreover, to our knowledge, this is the first study to identify A. alternata and C. coatesiae as causal agents of rice seedling blight in Northeast China. None of the F. oxysporum isolates were sensitive to 10 μg/ml of carbendazim, implying that carbendazim is ineffective for controlling rice seedling blight in Northeast China. The F. oxysporum isolates were divided into nine groups based on a simple sequence repeat analysis involving 14 primer pairs. In addition, an analysis of molecular variance revealed a significant correlation between the F. oxysporum population and geographical location, which had a significant effect on the differentiation of the dominant isolate population. The results of this study provide insights into the genetic diversity of F. oxysporum strains causing rice seedling blight and may be useful for selecting isolates to screen for disease-resistant rice varieties, evaluating fungicide efficacy, and developing effective disease management strategies.


2020 ◽  
Vol 52 (6) ◽  
Author(s):  
Anpei Zhou ◽  
Dan Zong ◽  
Peihua Gan ◽  
Yao Zhang ◽  
Dan Li ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 723-731
Author(s):  
Xu Gangbiao ◽  
Liang Yan ◽  
Jiang Yan ◽  
Liu Xiongsheng ◽  
Hu Shangli ◽  
...  

2010 ◽  
Vol 36 (5) ◽  
pp. 744-753 ◽  
Author(s):  
Ting-Ting QIAO ◽  
Chun-Lei MA ◽  
Yan-Hua ZHOU ◽  
Ming-Zhe YAO ◽  
Rao LIU ◽  
...  

2013 ◽  
Vol 38 (12) ◽  
pp. 2286-2296 ◽  
Author(s):  
Wen-Di YUE ◽  
Li-Bin WEI ◽  
Ti-De ZHANG ◽  
Chun LI ◽  
Hong-Mei MIAO ◽  
...  

2019 ◽  
Vol 57 (5) ◽  
pp. 652-672 ◽  
Author(s):  
Abhishek Bhandawat ◽  
Vikas Sharma ◽  
Pradeep Singh ◽  
Romit Seth ◽  
Akshay Nag ◽  
...  

1995 ◽  
Vol 85 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Philippe Borsa ◽  
D. Pierre Gingerich

AbstractSeven presumed Mendelian enzyme loci (Est-2, Est-3, Gpi, Idh-l, Idh-2, Mdh-2 and Mpi) were characterized and tested for polymorphism in coffee berry borers, Hypothenemus hampei (Ferrari), sampled in Côte d′Ivoire, Mexico and New Caledonia. The average genetic diversity was H = 0.080. Two loci, Mdh-2 and Mpi were polymorphic, and thus usable as genetic markers. The population structure of H. hampei was analysed using Weir & Cockerham's estimators of Wright's F-statistics. A high degree of inbreeding (f = 0.298) characterized the elementary geographic sampling unit, the coffee field. The estimate of gene flow between fields within a country was Nm = 10.6 and that between countries was Nm = 2. The population genetic structure in H. hampei could be related to its known population biological features and history.


Sign in / Sign up

Export Citation Format

Share Document