scholarly journals Physical and mathematical modeling of transients in a synchronous generator utilizing synchronized phasor measurements

Vestnik IGEU ◽  
2021 ◽  
pp. 22-32
Author(s):  
V.R. Rafikov ◽  
I.E. Ivanov ◽  
A.A. Bratoliubov

There have been quite a few attempts to compute synchronous generator parameters based on voltage and current synchrophasors taken under power system transients. However, we have not seen any publications with thorough analysis as to how soon the phasor measurement unit reacts to disturbance conditions, which components of the transient are filtered out and which are passed through, as well as what the total vector error is. The goal of this research is to determine all of these characteristics of a phasor measurement unit when playing back transient oscillograms for a stator short circuit obtained through mathematical modeling. The transient oscillograms have been derived via both a full Park-Gorev system of flux linkage equations as well as the MATLAB/Simulink Synchronous Machine block. Physical modeling was then conducted via a real-time digital simulator (RTDS) along with a dedicated phasor measurement unit ENIP-2 (PMU), and the stator current phasors were recorded. Our analysis has shown that both RTDS and ENIP-2 (PMU) almost entirely filter out the exponentially decaying DC component of the fault current while closely following the periodical signal envelope. The total vector error has been estimated to become below 1–2 % after around 0,02–0,03 s into the fault when selecting the “P” class filters according to IEEE C37.118. We have come to a conclusion that synchrophasor measurements under power system disturbances could be utilized for estimating the synchronous, transient, and subtransient generator parameters. The selected synchronous machine model in the form of flux linkage equations is correct, as the obtained transient oscillograms are exactly the same as those produced by Simulink. “P” class phasor measurements can be recommended for representing transients in the stator circuit of a synchronous generator. The results of this investigation are meant to be employed for synchronous machine parameter estimation based on phasors sourced from RTDS and, hopefully, from phasor measurement units installed at power plants.

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1174
Author(s):  
Maveeya Baba ◽  
Nursyarizal B. M. Nor ◽  
M. Aman.Sheikh ◽  
Muhammad Irfan ◽  
Mohammad Tahir

Currently the new state of power system relies on a precise monitoring of electrical quantities such as voltage and current phasors. Occasionally, its operation gets disturbed because of the flicking in load and generation which may result in the interruption of power supply or may cause catastrophic failure. The advanced technology of phasor measurement unit (PMU) is introduced in the late 1990s to measure the behavior of power system more symmetrically, accurately, and precisely. However, the implementation of this device at every busbar in a grid station is not an easy task because of its expensive installation and manufacturing cost. As a result, an optimum placement of PMU is much needed in this case. Therefore, this paper proposes a new symmetry approach of multiple objectives for the optimum placement of PMU problem (OPPP) in order to minimize the installed number of PMUs and maximize the measurement redundancy of the network. To overcome the drawbacks of traditional techniques in the proposed work a reduction and exclusion of pure transit node technique is used in the placement set. In which only the strategic, significant, and the most desirable buses are selected without considering zero injection buses (ZIBs). The fundamental novelty of the proposed work considers most importantly the reduction technique of ZIBs from the optimum PMU locations, as far as the prior approaches concern almost every algorithm have taken ZIBs as their optimal placement sets. Furthermore, a PMUs channel limits and an alternative symmetry location for the PMUs placement are considered when there is an outage or PMUs failure may occur. The performance of the proposed method is verified on different IEEE-standard such as: IEEE-9, IEEE-14, IEEE-24, IEEE-30, IEEE-57, IEEE-118, and a New England-39 bus system. The success of the proposed work was compared with the existing techniques’ outcomes from the literature.


Author(s):  
Takuhei Hashiguchi ◽  
Hiroyuki Ukai ◽  
Yasunori Mitani ◽  
Masayuki Watanabe ◽  
Osamu Saeki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document