SINGLE STAGE HIGH GAIN CURRENT FED SWITCHED INVERTER FOR HYBRID RENEWABLE ENERGY RESOURCES TO FEED THE AC LOADS

2019 ◽  
Vol 19 (2) ◽  
pp. 143-155
Author(s):  
Shaik Mohammad Irshad ◽  
Ramesh G.P
2021 ◽  
pp. 0958305X2110301
Author(s):  
Animesh Masih ◽  
HK Verma

In current scenario, people tend to move towards outskirts and like to settle in places that are close to nature. But, due to urban lifestyle and to fulfill the basic needs, demand of electricity remains the same as in urban areas. This demand of electricity can be only fulfilled by using hybrid renewable energy resources, which is easily available in outskirts. Renewable energy resources are unreliable and more expensive. Researchers are working to make, it more reliable and economic in terms of utilization. This article proposes a metaheuristic grasshopper optimization algorithm (GOA) for the optimal sizing of hybrid PV/wind/battery energy system located in remote areas. The proposed algorithm finds the optimal sizing and configuration of remote village load demand that includes house electricity and agriculture. The optimization problem is solved by minimization of total system cost at a desirable level of loss of power supply’s reliability index (LPSRI). The results of GOA are compared with particle swarm optimization (PSO), genetic algorithm (GA) and hybrid optimization of multiple energy resources (HOMER) software. In addition, results are also validated by modeling and simulation of the hybrid energy system and its configurations at different weather conditions-based results. Hybrid PV/wind/battery is found as an optimal system at remote areas and sizing are[Formula: see text] with cost of energy (COE) (0.3473$/kWh) and loss of power supplies reliability index (LPSRI) (0%). It is clear from the results that GOA based methods are more efficient for selection of optimal energy system configuration as compared to others algorithms.


Many people in rural society of India does not have access to natural energy resources like LPG , electricity as there is no facilitation of grid erection. Hence it becomes imperative for country like India to go for renewable energy resources as alternative to conventional energy resources. This paper evaluations the potential of different sources of renewable energy in India. It also highlights the trends in the growth of renewable energy sector, although at the same time shows that there is need of a hybrid renewable energy model for rural electrification in India. Paper also shows the scope in using the agriculture waste as bio fuel which burned otherwise and prompt health hazards besides environmental pollution, also describing many technologies which are in the demonstration stage like Tidal, OTEC, Solar thermal power plants. Many constraints put development in the field of solar and wind sector, on hold like availability of solar rays throughout the year . The main aim of the paper is to evaluation all possible options in renewable energy sector so that large segment of rural population can have access to electricity and to meet their basic energy needs.


2016 ◽  
Vol 818 ◽  
pp. 151-155
Author(s):  
Amir Hesam Khavari ◽  
Zulkurnain Abdul-Malek ◽  
Mehdi Moradi ◽  
Jalal Tavalaei ◽  
Sajjad Abdolahzadeh Anbaran ◽  
...  

The utilization of renewable resources is growing, in part due to the environmental impacts caused by fossil fuels. The largest sources of renewable energy are wind and solar and many predict that these energy sources will be increasingly used for distributed generation. In this paper, the feasibility is examined of a grid-independent system applied for a remote area electrification in Binalood, Iran. Traditional power systems for remote or rural areas are based on fossil fuels. After addition of renewable energy resources, solar energy applications have become popular in remote energy systems. The recent study and research works show that adding other possible renewable energy resources such as wind, hydro and biomass could make a hybrid system more cost-effective and environmentally friendly. Hence, in the present study, an overview of applied hybrid renewable energy system (HRES) for worldwide villages with special attention on Iran has been proposed to help present and future works for better achievement in this field. Furthermore sensitivity analyses are performed to determine the impact on performance of several key parameters: wind speed and fuel costs. HOMER was used to evaluate the feasibility of various hybrid systems. The results of a comprehensive feasibility data analysis along with its economic evaluation indicate that the wind-diesel hybrid system with battery storage is most efficient energy system for supplying this remote area's electrical energy demands.


2019 ◽  
Vol 10 (12) ◽  
pp. 1165-1171
Author(s):  
Karl Gatterer ◽  
◽  
Salah Arafa ◽  

Reliable and affordable energy is the key for the socio-economic development in rural and desert communities worldwide. While energy can be used for consumption purposes such as Lighting, Access to Information, Comfort and Entertainment, productive use of renewable energy is the key enabler for SMEs and Economy to grow. The paper examines the complex interactions among Energy, Materials, Water, Food, Building, Employment and Environment. It also discusses the implementation of renewable energy technologies to overcome some of barriers faced by rural villages and desert communities. It shows some of the special applications and approaches used over the past few decades in energy conversion, consumption and conservation to achieve poverty reduction, social justice and sustainable development. Field experiences in Basaisa projects, Egypt showed that open free dialogues with all stakeholders, site-specific education and training, appropriate local financing systems and access to knowledge are key-elements and essential factors for achieving green economy and sustainable community development. The coming decade will see a continued expansion of knowledge about renewable energy resources and its useful applications as systems friendly to the environment and as tools for economic activities, sustainable living and growth in rural and desert communities.


2012 ◽  
Vol 2 (11) ◽  
pp. 121-124
Author(s):  
Savitha C Savitha C ◽  
◽  
Dr. S. Mahendrakumar Dr. S. Mahendrakumar

Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


Sign in / Sign up

Export Citation Format

Share Document