A GENERALIZED FRACTIONAL POWER SERIES FOR SOLVING NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

2019 ◽  
Vol 111 (1) ◽  
pp. 133-144
Author(s):  
Sirunya Thanompolkrang ◽  
Duangkamol Poltem
Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1070
Author(s):  
Pshtiwan Othman Mohammed ◽  
José António Tenreiro Machado ◽  
Juan L. G. Guirao ◽  
Ravi P. Agarwal

Nonlinear fractional differential equations reflect the true nature of physical and biological models with non-locality and memory effects. This paper considers nonlinear fractional differential equations with unknown analytical solutions. The Adomian decomposition and the fractional power series methods are adopted to approximate the solutions. The two approaches are illustrated and compared by means of four numerical examples.


2016 ◽  
Vol 12 (4) ◽  
pp. 6156-6159 ◽  
Author(s):  
Runqing Cui ◽  
Yue Hu

we use fractional power series method (FPSM) to solve some linear or nonlinear fractional differential equations . Compared to the other method, the FPSM is more simple, derect and effective.


Fractals ◽  
2021 ◽  
Author(s):  
MUHAMMAD AKBAR ◽  
RASHID NAWAZ ◽  
SUMBAL AHSAN ◽  
KOTTAKKARAN SOOPPY NISAR ◽  
KAMAL SHAH ◽  
...  

Fractional differential and integral equations are focus of the researchers owing to their tremendous applications in different field of science and technology, such as physics, chemistry, mathematical biology, dynamical system and engineering. In this work, a power series approach called Residual Power Series Method (RPSM) is applied for the solution of fractional (non-integer) order integro-differential equations (FIDEs). The Caputo sense is used for calculating fractional derivatives. Comparison of the obtained solution is made with the Trigonometric Transform Method (TTM) and Optimal Homotopy Asymptotic Method (OHAM). There is no restrictive condition on the proposed solution. The presented technique is simple in applicability and easily computable.


Author(s):  
Kebede Shigute Kenea

The present study aims to obtain infinite fractional power series solution vectors of fractional Cauchy-Riemann systems equations with initial conditions by the use of vectorial iterative fractional Laplace transform method (VIFLTM). The basic idea of the VIFLTM was developed successfully and applied to four test examples to see its effectiveness and applicability. The infinite fractional power series form solutions were successfully obtained analytically. Thus, the results show that the VIFLTM works successfully in solving fractional Cauchy-Riemann system equations with initial conditions, and hence it can be extended to other fractional differential equations.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 205 ◽  
Author(s):  
Mohammad Alaroud ◽  
Mohammed Al-Smadi ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din

The modeling of fuzzy fractional integro-differential equations is a very significant matter in engineering and applied sciences. This paper presents a novel treatment algorithm based on utilizing the fractional residual power series (FRPS) method to study and interpret the approximated solutions for a class of fuzzy fractional Volterra integro-differential equations of order 0<β≤1 which are subject to appropriate symmetric triangular fuzzy conditions under strongly generalized differentiability. The proposed algorithm relies upon the residual error concept and on the formula of generalized Taylor. The FRPS algorithm provides approximated solutions in parametric form with rapidly convergent fractional power series without linearization, limitation on the problem’s nature, and sort of classification or perturbation. The fuzzy fractional derivatives are described via the Caputo fuzzy H-differentiable. The ability, effectiveness, and simplicity of the proposed technique are demonstrated by testing two applications. Graphical and numerical results reveal the symmetry between the lower and upper r-cut representations of the fuzzy solution and satisfy the convex symmetric triangular fuzzy number. Notably, the symmetric fuzzy solutions on a focus of their core and support refer to a sense of proportion, harmony, and balance. The obtained results reveal that the FRPS scheme is simple, straightforward, accurate and convenient to solve different forms of fuzzy fractional differential equations.


Sign in / Sign up

Export Citation Format

Share Document