IN VITRO ANTHER AND ISOLATED MICROSPORE CULTURE AS TOOLS IN SWEET AND SPICE PEPPER BREEDING

2009 ◽  
pp. 61-64 ◽  
Author(s):  
A. Gémes Juhász ◽  
Z. Kristóf ◽  
P. Vági ◽  
C. Lantos ◽  
J. Pauk
Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1950
Author(s):  
Anna Mineykina ◽  
Ludmila Bondareva ◽  
Alexey Soldatenko ◽  
Elena Domblides

Red cabbage belongs to the economically important group of vegetable crops of the Brassicaceae family. A unique feature of this vegetable crop that distinguishes it from other members of the family is its unique biochemical composition characterized by high anthocyanin content, which gives it antioxidant properties. The production mainly uses F1 hybrids, which require constant parental lines, requiring 6–7 generations of inbreeding. Culture of isolated microspores in vitro is currently one of the promising methods for the accelerated production of pure lines with 100% homozygosity. The aim of this study is to investigate the factors and select optimal parameters for successful induction of red cabbage embryogenesis in isolated microspore culture in vitro and subsequent regeneration of DH plants. As a result of research, for the first time, it was possible to carry out the full cycle of obtaining DH plants of red cabbage from the induction of embryogenesis to their inclusion in the breeding process. The size of buds containing predominantly microspores at the late vacuolated stage and pollen at the early bi-cellular stage has to be selected individually for each genotype, because the embryoid yield will be determined by the interaction of these two factors. In the six samples studied, the maximum embryoid yield was obtained from buds 4.1–4.4 mm and 4.5–5.0 mm long, depending on the genotype. Cultivation of microspores was carried out on liquid NLN culture medium with 13% sucrose. The maximum number of embryoids (173.5 ± 7.5 pcs./Petri dish) was obtained on culture medium with pH 5.8 and heat shock at 32 °C for 48 h. Successful embryoid development and plant regeneration by direct germination from shoot apical meristem were achieved on MS culture medium with 2% sucrose and 0.7% agar, supplemented with 6-benzylaminopurine at a concentration of 1 mg/L. Analysis of the obtained regenerated plants, which successfully passed the stage of adaptation to ex vitro conditions by flow cytometry, showed that most of them were doubled haploids (up to 90.9%). A low number of seeds produced by self-fertilization in DH plants was observed.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 278 ◽  
Author(s):  
Daria Shumilina ◽  
Dmitry Kornyukhin ◽  
Elena Domblides ◽  
Alexey Soldatenko ◽  
Anna Artemyeva

Turnip is a biennial crop and, consequently, the creation of pure lines for breeding is a time-consuming process. The production of pure turnip lines using doubled haploids produced in isolated microspore culture has not been sufficiently developed. The aim of the present work was to determine some key factors inducing embryogenesis in the isolated microspore culture of turnip, as well as investigating the manners of embryo development. It was shown that the acidity of the medium is an important factor in embryo production; different optimal pH levels ranging from 6.2 to 6.6 corresponded to individual genotypes. Such factors as the cold treatment of buds and the addition of activated charcoal to the nutrient medium increased the responsiveness of all genotypes studied. The turnip variety ‘Ronde witte roodkop herfst’ demonstrated a genetic disorder in the development of microspores; namely, non-separation of some microspores from tetrads. In the in vitro culture, each of the daughter microspores developed on its own. This indicates the dependence of the possibility of embryogenesis in the turnip microspore culture on the genotype. Results suggest that the initiation of secondary embryogenesis in primary embryos leads to an increase in the proportion of doubled haploid plants.


Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 432-441 ◽  
Author(s):  
Tianci Hu ◽  
Ken J Kasha

Isolated microspores of wheat can be induced in vitro to switch their development from the gametophytic pollen pathway to a sporophytic pathway, resulting in embryoid or callus formation. The influence of cold or mannitol pretreatment on karyokinesis and cytokinesis in isolated microspore culture responses were investigated. Anthers were pretreated in mannitol for 7 d at 28°C; spikes at 4°C for 28 d. Microspores often completed the 1st mitotic nuclear division during pretreatment while cytokinesis was delayed. During mannitol pretreatments, the 1st mitotic nuclear division was mostly symmetrical while only asymmetric 1st nuclear divisions were seen during or after cold pretreatment. Following the symmetrical division, the two similar nuclei often appeared to fuse to form a diploid nucleus. Subsequently, these nuclei underwent rapid nuclear divisions to form multinucleate, and later, multicellular structures in induction medium. Cold pretreatments also induced muticellular structures but frequencies were lower than after mannitol. A novel pretreatment of spikes, combining 0.4 M mannitol solution at 4°C for 4 d, delayed the 1st nuclear division, keeping all microspores in a haploid uni-nucleate stage and resulted in higher induction frequencies. The proportion of embryos larger than 2 mm that developed into green plants was as high as 70% when transferred to regeneration media. Ninety-five percent of the plantlets transferred from culture to soil survived. The improved pretreatment enhanced the potential of isolated microspore culture in wheat for plant breeding by producing large numbers of plants and for gene transformation by maintaining a uniform population of haploid uni-nucleate stage microspores as targets.Key words: wheat, pretreatment, karyokinesis, embryogenesis, microspore, cold, mannitol.


Sign in / Sign up

Export Citation Format

Share Document