EFFICIENCY OF CO-SUPPRESSION AND RNA-SILENCING TECHNOLOGIES FOR IMPROVING PLUM POX VIRUS RESISTANCE OF TRANSGENIC PLUM (PRUNUS DOMESTICA L.)

2011 ◽  
pp. 131-138 ◽  
Author(s):  
S.V. Dolgov ◽  
T.A. Serova ◽  
A.I. Taranov ◽  
A.P. Firsov
HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 862D-862
Author(s):  
Jean-Michel Hily ◽  
Ralph Scorza* ◽  
Michel Ravelonandro

We have shown that high-level resistance to plum pox virus (PPV) in transgenic plum clone C5 is based on post-transcriptional gene silencing (PTGS), otherwise termed RNA silencing (Scorza et al. Transgenic Res. 10:201-209, 2001). In order to more fully characterize RNA silencing in woody perennial crops, we investigated the production of short interfering RNA (siRNA) in transgenic plum clones C3 and C5, both of which harbor the capsid protein (CP) gene of PPV. We used as a control, plum PT-23, a clone only transformed with the two marker genes, NPTII and GUS. We show in the current report that C5 constitutively produces two classes of siRNA, the short (21-22 nucleotides) and long (≈27 nucleotides) species in the absence of PPV inoculation. Transgenic susceptible clone C3 and the control clone PT-23, when healthy, produce no siRNA. Upon infection, these clones produce only the short siRNA (21-22 nt). This siRNA production suggests that plum trees naturally respond to virus infection by initiating PTGS or PTGS-like mechanisms. This study also suggests that high-level virus resistance in woody perennials may require the production of both the short and long size classes of siRNA, as are produced by the resistant C5 plum clone.


2003 ◽  
Vol 84 (10) ◽  
pp. 2877-2883 ◽  
Author(s):  
Carmen Simón-Mateo ◽  
Juan José López-Moya ◽  
Hui Shan Guo ◽  
Elena González ◽  
Juan Antonio García

The process known as ‘recovery’ by which virus-infected plants become resistant to the infection is an interesting phenomenon where both RNA silencing and virus resistance fully converge. In a previous study, we showed that transgenic Nicotiana benthamiana NIbV3 plants, transformed with a mutated NIb coding sequence from Plum pox virus (PPV), showed a delayed, very specific, resistance phenotype, which was induced by the initial infection. This recovery was the consequence of the activation of an RNA silencing mechanism in the PPV-infected plant, which took place even though PPV encodes a silencing suppressor (HCPro). Making use of plants regenerated from the recovered tissue, which maintained the transgene silencing/virus resistance phenotype, we have demonstrated that both Cucumber mosaic virus (CMV) and Tobacco vein mottling virus (TVMV), expressing the silencing suppressor 2b and HCPro, respectively, were able to reactivate transgene expression. Surprisingly, only the silencing suppression caused by CMV, but not that originating from TVMV, was able to revert the recovered NIbV3 plants to a PPV-susceptible phenotype.


2006 ◽  
Vol 80 (20) ◽  
pp. 10055-10063 ◽  
Author(s):  
Adrian Valli ◽  
Ana Montserrat Martín-Hernández ◽  
Juan José López-Moya ◽  
Juan Antonio García

ABSTRACT The P1 protein of viruses of the family Potyviridae is a serine proteinase, which is highly variable in length and sequence, and its role in the virus infection cycle is not clear. One of the proposed activities of P1 is to assist HCPro, the product that viruses of the genus Potyvirus use to counteract antiviral defense mediated by RNA silencing. Indeed, an HCPro-coding region is present in all the genomes of members of the genera Potyvirus, Rymovirus, and Tritimovirus that have been sequenced. However, it was recently reported that a sequence coding for HCPro is lacking in the genome of Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, the fourth monopartite genus of the family. In this study, we provide further evidence that P1 enhances the activity of HCPro in members of the genus Potyvirus and show that it is duplicated in the ipomovirus CVYV. The two CVYV P1 copies are arranged in tandem, and the second copy (P1b) has RNA silencing suppression activity. CVYV P1b suppressed RNA silencing induced either by sense green fluorescent protein (GFP) mRNA or by a GFP inverted repeat RNA, indicating that CVYV P1b acts downstream of the formation of double-stranded RNA. CVYV P1b also suppressed local silencing in agroinfiltrated patches of transgenic Nicotiana benthamiana line 16c and delayed its propagation to the neighboring cells. However, neither the short-distance nor long-distance systemic spread of silencing of the GFP transgene was completely blocked by CVYV P1b. CVYV P1b and P1-HCPro from the potyvirus Plum pox virus showed very similar behaviors in all the assays carried out, suggesting that evolution has found a way to counteract RNA silencing by similar mechanisms using very different proteins in viruses of the same family.


2018 ◽  
Vol 163 (5) ◽  
pp. 1357-1362 ◽  
Author(s):  
Md Emran Ali ◽  
Yuko Ishii ◽  
Jyun-ichi Taniguchi ◽  
Sumyya Waliullah ◽  
Kappei Kobayashi ◽  
...  

2008 ◽  
Vol 35 (No. 2) ◽  
pp. 50-64 ◽  
Author(s):  
M. Neumüller ◽  
W. Hartmann

More than 1,300 seedlings of European plum originating from crossing combinations with at least one parent showing hypersensitivity resistance against PPV were analyzed for their reaction to artificial inoculation with PPV using the double grafting method with virus infected interstem. It was shown that the hypersensitivity resistance against the virus is a phenotypically quantitative trait. The different kinds of symptoms observed in the test system, which contribute to the hypersensitivity resistance, range from weak necrosis on the leaf blade and on the stem to the death of the whole young shoots. A hypersensitivity index was developed which helps to determine the degree of hypersensitivity resistance of an individual genotype. Its use is strongly recommended as selection tool in breeding for hypersensitivity resistance.


2008 ◽  
Vol 44 (No. 1) ◽  
pp. 1-5 ◽  
Author(s):  
J. Polák ◽  
M. Ravelonandro ◽  
J. Kumar-Kundu ◽  
J. Pívalová ◽  
R. Scorza

Transgenic plums, <I>Prunus domestica</I> L. clone C5, were inoculated by bud grafting with <I>Plum pox virus</I> (PPV-Rec, recombinant strain originated from plum), PPV-Rec + <I>Apple chlorotic leafspot virus</I> (ACLSV), PPV-Rec + <I>Prune dwarf virus</I> (PDV), and PPV-Rec + ACLSV + PDV. Non-inoculated transgenic plums served as controls. Plants were grown in an open field for 5 years. They were evaluated by visible symptoms, by DAS-ELISA and RT-PCR. Mild PPV symptoms, diffuse spots or rings appeared two years after inoculation in some leaves of plants artificially inoculated with PPV-Rec, PPV-Rec + ACLSV, PPV-Rec + PDV, and PPV-Rec + ACLSV + PDV. Severe PPV symptoms appeared in leaves of shoots growing from infected buds used for inoculation. During the following three years, further weakening of PPV symptoms was observed in transgenic plants. In 2007, very mild PPV symptoms were found in only a few leaves, and over 60%, resp. 70% of the C5 trees showed no PPV symptoms. The presence of PPV was confirmed by ELISA, ISEM and RT-PCR. No difference in PPV symptoms was observed between PPV-Rec and combinations PPV-Rec + ACLSV, PPV-Rec + PDV, PPV-Rec + ACLSV + PDV. No symptoms of ACLSV appeared in combinations of ACLSV with PPV-Rec and PPV-Rec + PDV during 2004–2007, but the presence of ACLSV in leaves of transgenic plants clone C5 was proved by ELISA and RT-PCR. Neither synergistic nor antagonistic effects of ACLSV on PPV-Rec were observed. No symptoms of PDV appeared in combinations of viruses with PDV during 2004–2007. PDV was not detected by ELISA, and the presence of PDV was uncertain by RT-PCR in most of inoculated trees in 2006 and 2007. The results of RT-PCR will be further confirmed by sequence analysis and discussed. These results suggest a possible antagonistic interaction between PPV-Rec and PDV in plum clone C5.


2004 ◽  
Vol 13 (5) ◽  
pp. 427-436 ◽  
Author(s):  
Jean-Michel Hily ◽  
Ralph Scorza ◽  
Tadeusz Malinowski ◽  
Barbara Zawadzka ◽  
Michel Ravelonandro

2007 ◽  
Vol 4 (3) ◽  
pp. 391-402 ◽  
Author(s):  
J. M. Soriano ◽  
E. M. Vera-Ruiz ◽  
S. Vilanova ◽  
J. Martínez-Calvo ◽  
G. Llácer ◽  
...  

2005 ◽  
Vol 95 (8) ◽  
pp. 894-901 ◽  
Author(s):  
Pablo González-Jara ◽  
Felix A. Atencio ◽  
Belén Martínez-García ◽  
Daniel Barajas ◽  
Francisco Tenllado ◽  
...  

The effects on symptom expression of single amino acid mutations in the central region of the Plum pox virus (PPV) helper component-proteinase (HC-Pro) gene were analyzed in Nicotiana benthamiana using Potato virus X (PVX) recombinant viruses. PVX recombinant virus expressing the wild-type variant of PPV HC-Pro induced the expected enhancement of PVX pathogenicity, manifested as necrosis and plant death. Recombinant virus expressing a variant of PPV HC-Pro containing a single point mutation ( HCL134H) was unable to induce this synergistic phenotype. The RNA silencing suppressor activity of PPV HC-Pro was demonstrated in a transient silencing suppression assay. In contrast, the HCL134H mutant showed no such activity. These results indicate that a unique point mutation in PPV HC-Pro impaired its ability to suppress RNA silencing and abolished its capacity to induce synergism, and clearly shows for the first time the link between these two functions in potyvirus HC-Pro. Additionally, we compared the effects on virus accumulation in N. benthamiana plants infected with either the PVX recombinant constructs or with native viruses in double infection experiments. PVX (+) and (-) strand genomic RNA accumulated at similar levels in plants infected with PVX recombinants, leading to an increase in PVX pathology, compared with plants infected with PVX alone. This finding confirms that the enhancement of pathogenicity associated with synergistic interaction is not a consequence of more efficient PVX replication due to RNA silencing suppression by PPV HC-Pro.


Sign in / Sign up

Export Citation Format

Share Document