transgene silencing
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 10)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Liangsheng Wang ◽  
Duorong Xu ◽  
Kristin Scharf ◽  
Wolfgang Frank ◽  
Dario Leister ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Butel ◽  
Agnès Yu ◽  
Ivan Le Masson ◽  
Filipe Borges ◽  
Taline Elmayan ◽  
...  

AbstractTransgenes that are stably expressed in plant genomes over many generations could be assumed to behave epigenetically the same as endogenous genes. Here, we report that whereas the histone H3K9me2 demethylase IBM1, but not the histone H3K4me3 demethylase JMJ14, counteracts DNA methylation of Arabidopsis endogenous genes, JMJ14, but not IBM1, counteracts DNA methylation of expressed transgenes. Additionally, JMJ14-mediated specific attenuation of transgene DNA methylation enhances the production of aberrant RNAs that readily induce systemic post-transcriptional transgene silencing (PTGS). Thus, the JMJ14 chromatin modifying complex maintains expressed transgenes in a probationary state of susceptibility to PTGS, suggesting that the host plant genome does not immediately accept expressed transgenes as being epigenetically the same as endogenous genes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0245422
Author(s):  
Bill Hendrix ◽  
Paul Hoffer ◽  
Rick Sanders ◽  
Steve Schwartz ◽  
Wei Zheng ◽  
...  

Gene silencing in plants using topical dsRNA is a new approach that has the potential to be a sustainable component of the agricultural production systems of the future. However, more research is needed to enable this technology as an economical and efficacious supplement to current crop protection practices. Systemic gene silencing is one key enabling aspect. The objective of this research was to better understand topically-induced, systemic transgene silencing in Nicotiana benthamiana. A previous report details sequencing of the integration site of the Green Fluorescent Protein (GFP) transgene in the well-known N. benthamiana GFP16C event. This investigation revealed an inadvertent co-integration of part of a bacterial transposase in this line. To determine the effect of this transgene configuration on systemic silencing, new GFP transgenic lines with or without the transposase sequences were produced. GFP expression levels in the 19 single-copy events and three hemizygous GFP16C lines produced for this study ranged from 50–72% of the homozygous GFP16C line. GFP expression was equivalent to GFP16C in a two-copy event. Local GFP silencing was observed in all transgenic and GFP16C hemizygous lines after topical application of carbon dot-based formulations containing a GFP targeting dsRNA. The GFP16C-like systemic silencing phenotype was only observed in the two-copy line. The partial transposase had no impact on transgene expression level, local GFP silencing, small RNA abundance and distribution, or systemic GFP silencing in the transgenic lines. We conclude that high transgene expression level is a key enabler of topically-induced, systemic transgene silencing in N. benthamiana.


2021 ◽  
Author(s):  
Bill Hendrix ◽  
Paul Hoffer ◽  
Rick Sanders ◽  
Steve Schwartz ◽  
Wei Zheng ◽  
...  

AbstractGene silencing in plants using topical dsRNA is a new approach that has the potential to be a sustainable component of the agricultural production systems of the future. However, more research is needed to enable this technology as an economical and efficacious supplement to current crop protection practices. Systemic gene silencing is one key enabling aspect. The objective of this research was to better understand systemic transgene silencing in Nicotiana benthamiana. Previous reports details sequencing of the integration site of the Green Fluorescent Protein (GFP) transgene in the well-known N. benthamiana GFP16C event revealed inadvertent co-integration of part of a bacterial transposase. To determine the effect of this transgene configuration on systemic silencing, new GFP transgenic lines with or without the transposase sequences were produced. GFP expression levels in the 19 single-copy events and three hemizygous 16C lines produced for this study ranged from 50-72% of the homozygous 16C line. GFP expression was equivalent to 16C in a two-copy event. Local GFP silencing was observed in all transgenic and 16C hemizygous lines after topical application of delivery formulations with a GFP targeting dsRNA. The 16C-like systemic silencing phenotype was only observed in the two-copy line. The partial transposase had no impact on transgene expression level, local GFP silencing, small RNA abundance and distribution, or systemic GFP silencing in the transgenic lines. We conclude that high transgene expression level is a key enabler of systemic transgene silencing in N. benthamiana.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammed D. Aljohani ◽  
Sonia El Mouridi ◽  
Monika Priyadarshini ◽  
Amhed M. Vargas-Velazquez ◽  
Christian Frøkjær-Jensen

AbstractTransgenes are prone to progressive silencing due to their structure, copy number, and genomic location. In C. elegans, repressive mechanisms are particularly strong in the germline with almost fully penetrant transgene silencing in simple extrachromosomal arrays and frequent silencing of single-copy transgene insertions. A class of non-coding DNA, Periodic An/Tn Clusters (PATCs) can prevent transgene-silencing in repressive chromatin or from small interfering RNAs (piRNAs). Here, we describe design rules (codon-optimization, intron and PATC inclusion, elevated temperature (25 °C), and vector backbone removal) for efficient germline expression from arrays in wildtype animals. We generate web-based tools to analyze PATCs and reagents for the convenient assembly of PATC-rich transgenes. An extensive collection of silencing resistant fluorescent proteins (e.g., gfp, mCherry, and tagBFP) can be used for dissecting germline regulatory elements and a set of enhanced enzymes (Mos1 transposase, Cas9, Cre, and Flp recombinases) enable efficient genetic engineering in C. elegans.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1911 ◽  
Author(s):  
Jamie R. Bhagwan ◽  
Emma Collins ◽  
Diogo Mosqueira ◽  
Mine Bakar ◽  
Benjamin B. Johnson ◽  
...  

Background: Diseases such as hypertrophic cardiomyopathy (HCM) can lead to severe outcomes including sudden death. The generation of human induced pluripotent stem cell (hiPSC) reporter lines can be useful for disease modelling and drug screening by providing physiologically relevant in vitro models of disease. The AAVS1 locus is cited as a safe harbour that is permissive for stable transgene expression, and hence is favoured for creating gene targeted reporter lines. Methods: We generated hiPSC reporters using a plasmid-based CRISPR/Cas9 nickase strategy. The first intron of PPP1R12C, the AAVS1 locus, was targeted with constructs expressing a genetically encoded calcium indicator (R-GECO1.0) or HOXA9-T2A-mScarlet reporter under the control of a pCAG or inducible pTRE promoter, respectively. Transgene expression was compared between clones before, during and/or after directed differentiation to mesodermal lineages. Results: Successful targeting to AAVS1 was confirmed by PCR and sequencing. Of 24 hiPSC clones targeted with pCAG-R-GECO1.0, only 20 expressed the transgene and in these, the percentage of positive cells ranged from 0% to 99.5%. Differentiation of a subset of clones produced cardiomyocytes, wherein the percentage of cells positive for R-GECO1.0 ranged from 2.1% to 93.1%. In the highest expressing R-GECO1.0 clones, transgene silencing occurred during cardiomyocyte differentiation causing a decrease in expression from 98.93% to 1.3%. In HOXA9-T2A-mScarlet hiPSC reporter lines directed towards mesoderm lineages, doxycycline induced a peak in transgene expression after two days but this reduced by up to ten-thousand-fold over the next 8-10 days. Nevertheless, for R-GECO1.0 lines differentiated into cardiomyocytes, transgene expression was rescued by continuous puromycin drug selection, which allowed the Ca2+ responses associated with HCM to be investigated in vitro using single cell analysis. Conclusions: Targeted knock-ins to AAVS1 can be used to create reporter lines but variability between clones and transgene silencing requires careful attention by researchers seeking robust reporter gene expression.


2020 ◽  
Vol 39 (5) ◽  
pp. 683-685
Author(s):  
Cecilia Pascuan ◽  
Emilia Bottero ◽  
Tamas Kapros ◽  
Nicolás Ayub ◽  
Gabriela Soto

2020 ◽  
Vol 31 (3-4) ◽  
pp. 199-210 ◽  
Author(s):  
Denise Klatt ◽  
Erica Cheng ◽  
Dirk Hoffmann ◽  
Giorgia Santilli ◽  
Adrian J. Thrasher ◽  
...  

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1911 ◽  
Author(s):  
Jamie R. Bhagwan ◽  
Emma Collins ◽  
Diogo Mosqueira ◽  
Mine Bakar ◽  
Benjamin B. Johnson ◽  
...  

Background: Diseases such as hypertrophic cardiomyopathy (HCM) can lead to severe outcomes including sudden death. The generation of human induced pluripotent stem cell (hiPSC) reporter lines can be useful for disease modelling and drug screening by providing physiologically relevant in vitro models of disease. The AAVS1 locus is cited as a safe harbour that is permissive for stable transgene expression, and hence is favoured for creating gene targeted reporter lines. Methods: We generated hiPSC reporters using a plasmid-based CRISPR/Cas9 nickase strategy. The first intron of PPP1R12C, the AAVS1 locus, was targeted with constructs expressing a genetically encoded calcium indicator (R-GECO1.0) or HOXA9-T2A-mScarlet reporter under the control of a pCAG or inducible pTRE promoter, respectively. Transgene expression was compared between clones before, during and/or after directed differentiation to mesodermal lineages. Results: Successful targeting to AAVS1 was confirmed by PCR and sequencing. Of 24 hiPSC clones targeted with pCAG-R-GECO1.0, only 20 expressed the transgene and in these, the percentage of positive cells ranged from 0% to 99.5%. Differentiation of a subset of clones produced cardiomyocytes, wherein the percentage of cells positive for R-GECO1.0 ranged from 2.1% to 93.1%. In the highest expressing R-GECO1.0 clones, transgene silencing occurred during cardiomyocyte differentiation causing a decrease in expression from 98.93% to 1.3%. In HOXA9-T2A-mScarlet hiPSC reporter lines directed towards mesoderm lineages, doxycycline induced a peak in transgene expression after two days but this reduced by up to ten-thousand-fold over the next 8-10 days. Nevertheless, for R-GECO1.0 lines differentiated into cardiomyocytes, transgene expression was rescued by continuous puromycin drug selection, which allowed the Ca2+ responses associated with HCM to be investigated in vitro using single cell analysis. Conclusions: Targeted knock-ins to AAVS1 can be used to create reporter lines but variability between clones and transgene silencing requires careful attention by researchers seeking robust reporter gene expression.


2019 ◽  
Vol 61 (12) ◽  
pp. 1243-1254 ◽  
Author(s):  
Guohui Zhu ◽  
Yanan Chang ◽  
Xuezhong Xu ◽  
Kai Tang ◽  
Chunxiang Chen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document