Soil-borne disease suppression and plant growth promotion by biochar soil amendments and possible mode of action

2018 ◽  
pp. 69-76 ◽  
Author(s):  
A.K. Jaiswal ◽  
Y. Elad ◽  
E.R. Graber ◽  
E. Cytryn ◽  
O. Frenkel
2012 ◽  
pp. 525-532 ◽  
Author(s):  
S. Velivelli ◽  
E. O'Herlihy ◽  
B. Janczura ◽  
B. Doyle Prestwich ◽  
J. Ghyselinck ◽  
...  

2018 ◽  
Vol 3 (3) ◽  
pp. 806-817 ◽  
Author(s):  
Jahanara Akter ◽  
Rayhanur Jannat ◽  
Md. Motaher Hossain ◽  
Jalal Uddin Ahmed ◽  
Md. Tanbir Rubayet

2013 ◽  
Vol 54 (8) ◽  
pp. 792-801 ◽  
Author(s):  
P. Hariprasad ◽  
S. Chandrashekar ◽  
S. Brijesh Singh ◽  
S. R. Niranjana

Author(s):  
Madhu Rawat ◽  
Yadukrishnan P. ◽  
Nitin Kumar

Nanoparticles are being formed continuously in processes like mineralization, natural calamities, and geological recycling of matter and present naturally in the environment. In the recent past, nanoparticles and their applications have become an extensive topic of research. Application of nanomaterials in different industries will surely enhance the chances of discharge of nanoparticles into the environment. So, a number of studies have been performed to explore the mode of action of nanoparticles on living organisms and their surroundings. The most reported modes of action of nanoparticles are antimicrobial activity, ROS-induced cytotoxicity, genotoxicity, plant growth promotion, etc. It has been successfully demonstrated that actions of nanoparticles are governed by their size, shape, dose, and concentration. However, a complete mechanism of action of nanoparticles has not been known. The present chapter focuses on the highlights of the mechanisms behind the mode of action of nanoparticles in plants and microorganisms.


Author(s):  
Madhu Rawat ◽  
Yadukrishnan P. ◽  
Nitin Kumar

Nanoparticles are being formed continuously in processes like mineralization, natural calamities, and geological recycling of matter and present naturally in the environment. In the recent past, nanoparticles and their applications have become an extensive topic of research. Application of nanomaterials in different industries will surely enhance the chances of discharge of nanoparticles into the environment. So, a number of studies have been performed to explore the mode of action of nanoparticles on living organisms and their surroundings. The most reported modes of action of nanoparticles are antimicrobial activity, ROS-induced cytotoxicity, genotoxicity, plant growth promotion, etc. It has been successfully demonstrated that actions of nanoparticles are governed by their size, shape, dose, and concentration. However, a complete mechanism of action of nanoparticles has not been known. The present chapter focuses on the highlights of the mechanisms behind the mode of action of nanoparticles in plants and microorganisms.


1998 ◽  
Vol 44 (6) ◽  
pp. 528-536 ◽  
Author(s):  
V K Sharma ◽  
J Nowak

The potential utilization of a plant growth promoting rhizobacterium, Pseudomonas sp. strain PsJN, to enhance the resistance of tomato transplants to verticillium wilt was investigated. Plant growth and disease development were tested on the disease-susceptible cultivar Bonny Best after Verticillium dahliae infection of tissue culture plantlets bacterized in vitro (by co-culturing with the bacterium) and seedlings bacterized in vivo (after 3 weeks growth in the greenhouse). Significant differences in both disease suppression and plant growth were obtained between in vitro bacterized and nonbacterized (control) plants. The degree of protection afforded by in vitro bacterization depended on the inoculum density of V. dahliae; the best and worst protection occurred at the lowest (103 conidia ·mL-1) and highest (106 conidia ·mL-1) levels, respectively. In contrast, the in vivo bacterized tomatoes did not show plant growth promotion when compared to the nonbacterized control plants. When challenged with Verticillium, significant growth differences between in vivo bacterized plants (26.8% for shoot height) and nonbacterized controls were only seen at the 3rd week after inoculation. Compared with the in vitro inoculation, there was no delay in the verticillium wilt symptom expression, even at the lowest concentration of V. dahliae, by in vivo PsJN inoculation. These results suggest that endophytic colonization of tomato tissues is required for the Verticillium-resistance responses. Plant growth promotion preceeds the disease-resistance responses and may depend on the colonization thresholds and subsequent sensitization of hosts.Key words: Pseudomonas sp., plant growth promoting rhizobacterium, Verticillium dahliae, tomato, colonization, plant growth promotion, disease suppression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sajjad Hyder ◽  
Amjad Shahzad Gondal ◽  
Zarrin Fatima Rizvi ◽  
Rashida Atiq ◽  
Muhammad Irtaza Sajjad Haider ◽  
...  

Pythium myriotylum is a notorious soil-borne oomycete that causes post-emergence damping-off in chili pepper. Of various disease management strategies, utilization of plant growth promoting rhizobacteria (PGPR) in disease suppression and plant growth promotion is an interesting strategy. The present study was performed to isolate and characterize PGPR indigenous to the chili rhizosphere in Pakistan, and to test the potential to suppress the damping-off and plant growth promotion in chili. Out of a total of 28 antagonists, eight bacterial isolates (4a2, JHL-8, JHL-12, 1C2, RH-24, 1D, 5C, and RH-87) significantly suppressed the colony growth of P. myriotylum in a dual culture experiment. All the tested bacterial isolates were characterized for biochemical attributes, and 16S rRNA sequence based phylogenetic analysis identified these isolates as Flavobacterium spp., Bacillus megaterium, Pseudomonas putida, Bacillus cereus, and Pseudomonas libanensis. All the tested bacterial isolates showed positive test results for ammonia production, starch hydrolase (except 4a2), and hydrogen cyanide production (except 4a2 and 1D). All the tested antagonists produced indole-3-acetic acid (13.4–39.0 μg mL–1), solubilized inorganic phosphate (75–103 μg mL–1), and produced siderophores (17.1–23.7%) in vitro. All the tested bacterial isolates showed varying levels of susceptibility and resistance response against different antibiotics and all these bacterial isolates were found to be non-pathogenic to chili seeds and notably enhanced percentage seed germination, plumule, redical length, and vigor index over un-inoculated control. Additionally, under pathogen pressure, bacterization increased the defense related enzymes such as Peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activates. Moreover, the treatment of chili seeds with these bacterial isolates significantly suppressed the damping-off caused by P. myriotylum and improved PGP traits compared to the control. In addition, a positive correlation was noticed between shoot, root length, and dry shoot and root weight, and there was a negative correlation between dry shoot, root weight, and seedling percentage mortality. These results showed that native PGPR possesses multiple traits beneficial to the chili plants and can be used to develop eco-friendly and effective seed treatment formulation as an alternative to synthetic chemical fungicides.


Author(s):  
Mukesh Meena ◽  
Prashant Swapnil ◽  
Andleeb Zehra ◽  
Mohd Aamir ◽  
Manish Kumar Dubey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document