pythium myriotylum
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 3 ◽  
Author(s):  
Cora S. McGehee ◽  
Rosa E. Raudales

Oomycetes and fungi were recovered from coconut coir and rockwool substrates where marijuana (Cannabis sativa L. cv. Silver and Citron) plants with root rot and wilt symptoms were grown in a commercial growing facility in Connecticut. The objectives of this study were to identify the isolates collected from these substrates, determine the pathogenicity of the isolates on hemp seedlings in vitro and in vivo, and evaluate the pathogens' sensitivity to mefenoxam. Pythium and Globisporangium isolates were identified by sequencing the mitochondrially-encoded cytochrome oxidase genes (COI and COII) and Fusarium sp. with the translation elongation factor (EF-1α) region and internal transcribed spacer region (ITS4 and ITS5) genes. Three isolates were identified as Globisporangium irregulare (formerly Pythium irregulare), 21 isolates were Pythium myriotylum, and one was Fusarium oxysporum. All the isolates tested were pathogenic to hemp plants in vitro and in vivo, with disease incidence between 6.7 and 100%. Inoculated plants were smaller by 32% or more compared with the non-inoculated control. On average, hemp plants infected with Pythium myriotylum produced the lowest biomass and relative greenness values. None of the Pythium and Globisporangium isolates were resistant to mefenoxam—all were sensitive to ≥5 μg·mL−1 mefenoxam. This is the first report of G. irregulare causing root rot on marijuana and hemp plants. The results of this study provide information about the characteristics of pathogens that can be found potentially in soilless substrates in controlled environment agriculture.


Plant Disease ◽  
2021 ◽  
Author(s):  
Paul Daly ◽  
Yifan Chen ◽  
Qimeng Zhang ◽  
Hongli Zhu ◽  
Jingjing Li ◽  
...  

Pythium soft rot is a major soil-borne disease of crops such as ginger (Zingiber officinale). Our objective was to identify which Pythium species were associated with Pythium soft-rot of ginger in China, where approximately 20% of global ginger production is from. Oomycetes infecting ginger rhizomes from seven provinces were investigated using two molecular markers, the internal transcribed spacer (ITS) and cytochrome c oxidase subunit II (CoxII). In total, 81 isolates were recovered and approximately 95% of the isolates were identified as Pythium myriotylum and the other isolates were identified as either P. aphanidermatum or P. graminicola. Notably, the P. myriotylum isolates from China did not contain the SNP in the CoxII sequence found previously in the P. myriotylum isolates infecting ginger in Australia. A subset of 36 of the isolates was analyzed repeatedly by temperature-dependent growth, severity of disease on ginger plants and aggressiveness of colonization of ginger rhizome sticks. In the pathogenicity assays, 32/36 of the isolates were able to significantly infect and cause severe disease symptoms on the ginger plants. A range of temperature-dependent growth, disease severity and aggressiveness in colonization was found with a significant moderate positive correlation between growth and aggressiveness of colonization of the ginger sticks. This study identified P. myriotylum as the major oomycete pathogen in China from infected ginger rhizomes and suggests that P. myriotylum should be a key target to control soft rot of ginger disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sajjad Hyder ◽  
Amjad Shahzad Gondal ◽  
Zarrin Fatima Rizvi ◽  
Rashida Atiq ◽  
Muhammad Irtaza Sajjad Haider ◽  
...  

Pythium myriotylum is a notorious soil-borne oomycete that causes post-emergence damping-off in chili pepper. Of various disease management strategies, utilization of plant growth promoting rhizobacteria (PGPR) in disease suppression and plant growth promotion is an interesting strategy. The present study was performed to isolate and characterize PGPR indigenous to the chili rhizosphere in Pakistan, and to test the potential to suppress the damping-off and plant growth promotion in chili. Out of a total of 28 antagonists, eight bacterial isolates (4a2, JHL-8, JHL-12, 1C2, RH-24, 1D, 5C, and RH-87) significantly suppressed the colony growth of P. myriotylum in a dual culture experiment. All the tested bacterial isolates were characterized for biochemical attributes, and 16S rRNA sequence based phylogenetic analysis identified these isolates as Flavobacterium spp., Bacillus megaterium, Pseudomonas putida, Bacillus cereus, and Pseudomonas libanensis. All the tested bacterial isolates showed positive test results for ammonia production, starch hydrolase (except 4a2), and hydrogen cyanide production (except 4a2 and 1D). All the tested antagonists produced indole-3-acetic acid (13.4–39.0 μg mL–1), solubilized inorganic phosphate (75–103 μg mL–1), and produced siderophores (17.1–23.7%) in vitro. All the tested bacterial isolates showed varying levels of susceptibility and resistance response against different antibiotics and all these bacterial isolates were found to be non-pathogenic to chili seeds and notably enhanced percentage seed germination, plumule, redical length, and vigor index over un-inoculated control. Additionally, under pathogen pressure, bacterization increased the defense related enzymes such as Peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activates. Moreover, the treatment of chili seeds with these bacterial isolates significantly suppressed the damping-off caused by P. myriotylum and improved PGP traits compared to the control. In addition, a positive correlation was noticed between shoot, root length, and dry shoot and root weight, and there was a negative correlation between dry shoot, root weight, and seedling percentage mortality. These results showed that native PGPR possesses multiple traits beneficial to the chili plants and can be used to develop eco-friendly and effective seed treatment formulation as an alternative to synthetic chemical fungicides.


2021 ◽  
Author(s):  
Leonardo Sarno Soares Oliveira ◽  
Thomas Jung ◽  
Ivan Milenković ◽  
Marthin Tarigan ◽  
Marília Horta Jung ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahuai Hu

During August and September 2020, symptoms of leaf chlorosis, stunting, and wilting were observed on indoor hemp plants (Cannabis sativa L. cv. ‘Wedding Cake’) in a commercial indoor facility located in Coolidge, Arizona. Plants were grown in soilless coconut coir growing medium (Worm Factory COIR250G10), watered with 1.5 to 2.1 liters every 24 h through drip irrigation, and supplemented with 18 h of lighting. About 35% of plants displayed symptoms as described above and many symptomatic plants collapsed. To identify the causal agent, crown and root tissues from four symptomatic plants were harvested and rinsed with tap water. Tissue fragments (approx. 2 to 4 mm in size) were excised from the margins of the stem and root lesions, surface sterilized in 0.6% sodium hypochlorite for 1 min, rinsed well in sterile distilled water, blotted dry, and plated on potato dextrose agar (PDA) and on oomycete-selective clarified V8 media containing pimaricin, ampicillin, rifampicin, and pentachloronitrobenzene (PARP). Plates were incubated at room temperature (21-24 oC). Five isolates resembling Pythium were transferred after 3 days and maintained on clarified V8 media. Morphological characteristics were observed on grass blade cultures (Waterhouse 1967). Grass blades were placed on CV8 inoculated with the isolate. After a 1-day incubation at 25°C, the colonized blades were transferred to 8 ml of soil water extract in a Petri dish. Ten sporangia and oogonia were selected randomly and their diameters were measured under the microscope. Sporangia were mostly filamentous, undifferentiated or inflated lobulate, ranging from 7 to 17 µm in diameter. Knob-like appressoria were observed on branching clusters. Bulbous-like antheridia were formed on branched stalk with 1-8 antheridia per oogonium. Globose oogonia were terminal or intercalary and ranged from 21 to 33 µm in diameter. Globose oospores were mostly aplerotic and ranged from 15 to 21 μm in diameter. Based on these morphological characteristics, isolates were tentatively identified as Pythium myriotylum (Watanabe, 2002). Genomic DNA was extracted from mycelial mats of two isolates using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions. The internal transcribed spacer (ITS) region of rDNA was amplified with primers ITS1/ITS4 and two identical nucleotide sequences were obtained and deposited under accession number MW380925. A BLASTn search revealed ≥ 98% query coverage and 100% match with sequences HQ237488.1, KY019264.1, and KM434129, which were isolates of P. myriotylum from palm, tobacco, and ginger, respectively. To fulfill Koch’s postulates, pathogenicity tests were conducted with 2 isolates using plants of ‘Wedding Cake’ grown in 12 1.9-liter pots filled with a steam-disinfested potting mix (Sungro Professional Growing Mix). Pots were placed in a plastic container and watered to flooding three times a week. Plants were maintained in a greenhouse with 18 h/10 h day/night supplemental light cycle (15-28 oC). Plants were fertilized weekly with Peters Professional fertilizer at 1mg/ml. Four plants were inoculated with each isolate at three weeks after seed sowing by placing two 5-mm mycelial plugs from active growing 4 days-old cultures on PDA media adjacent to the main root mass at an approximately 3 cm depth. Four plants were inoculated with blank PDA plugs as controls. Symptoms of leaf chlorosis, crown rot and wilting were observed after four weeks while control plants remained symptomless. P. myriotylum was re-isolated from necrotic roots of inoculated plants after surface-sterilization, but not from control plants. The pathogenicity test was repeated once. While P. myriotylum often occurs in warmer regions and has a wide host range of >100 host plant species including numerous economically important crops (Wang et al., 2003), there are only two reports of this pathogen on indoor hemp plants in a greenhouse in Connecticut (McGehee et al., 2019) and in Canada (Punja et al., 2019). This is the first report of P. myriotylum causing root and crown rot of indoor hemp in Arizona. A more careful water management in soilless growth medium to reduce periods of saturation would minimize the risk of Pythium root rot in indoor hemp production.


2021 ◽  
Vol 87 (3) ◽  
pp. 148-153
Author(s):  
Susumu Nagashima ◽  
Xiaodong You ◽  
Shihomi Uzuhashi ◽  
Motoaki Tojo
Keyword(s):  
Root Rot ◽  

Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 233
Author(s):  
Qiang Yan ◽  
Qinxue Zhang ◽  
Pei Ding ◽  
Xingxing Yuan ◽  
Ranran Wu ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (9) ◽  
pp. 2529-2529
Author(s):  
J. W. Woodhall ◽  
M. Harrington ◽  
S. Keith ◽  
A. Oropeza ◽  
M. Thornton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document