scholarly journals EXPERIMENTAL STUDIES ON THE INFLUENCE OF TRANSVERSE REINFORCEMENT FOR STRENGTH OF COMPRESSED REINFORCED CONCRETE ELEMENTS

2021 ◽  
Vol 10 (4) ◽  
pp. 21-28
Author(s):  
Sergey S. MORDOVSKIY ◽  
Kamil B. SHARAFUTDINOV

The infl uence of transverse reinforcement, including indirect reinforcement, on the strength of compressed reinforced concrete elements is analyzed. This question arose in connection with the possibility of increasing the strength of short reinforced concrete elements loaded with a longitudinal force with small eccentricities within the section of the element. For such elements, the cage eff ect may appear, associated with the coeffi cient of transverse deformations, the magnitude of which is a direct factor in the destruction of the concrete sample, and the limitation of these directly aff ects the bearing capacity of the sample in the direction of increase. The infl uence of transverse reinforcement in the form of stirrups located with diff erent spacing, as well as indirect reinforcement in the form of meshes with a classical rectangular cell and meshes of the “zigzag” type is considered.

Author(s):  
L. I. Storozhenko ◽  
S. O. Murza ◽  
О. І. Yefimenko

The experimental studies results of reinforced concrete elements with sheet reinforcement load bearing capacity are presented. The drawing of experimental designs is shown. The bearing capacity dependence graphs of the tested steel-reinforced concrete samples with sheet reinforcement on the height of the element and dependence graphs of tested steel-reinforced concrete samples with sheet reinforcement carrying capacity on the applied eccentricity are constructed. The photo shows the destruction character of experimental steel-concrete samples with sheet reinforcement depending on their height. The general schedule of bearing capacity dependence on the height of the element and the eccentricity of the applied load is constructed.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022051
Author(s):  
Andrii Mazurak ◽  
Roman Kinasz ◽  
Ivan Kovalyk ◽  
Rostyslav Mazurak ◽  
Vitaliy Kalchenko

Abstract Reinforcement bending reinforced concrete structures by increasing the cross section and assessing the load-bearing capacity of the inclined section such elements is an urgent problem, as not yet accumulated adequate research data on the stress-strain state such structures in the span, which works on shear and shear bending moment and transverse force. Analyzing the development theories calculation reinforced concrete elements inclined to the longitudinal axis, we can identify many areas, the main approach of which was based on the calculation using the bases of material resistance, and the use of empirical dependencies. Theoretical approaches calculation the European construction magazine RILEM TC, SNiP 2.03.01.-84* are considered, DBN B.2.6-98 2009 (Eurocode 2), US ACI 318-19. Experimental studies reinforced concrete elements to determine the load-bearing capacity inclined sections were performed on the basis of 5 samples reinforced concrete beams, 14 reinforced samples of reinforced concrete and shotcrete a total of 19 pieces in four series. Beams were made of concrete in each series fck = 19.08 MPa; fck = 27.74 MPa; fck = 20.48 MPa; fck = 20.48 MPa, respectively, reinforced samples with concrete fck = 17.95 MPa; fck = 19.5 MPa (shotcrete fck = 31.00 MPa); shotcrete fck = 19.9 MPa; fck = 19.9 MPa. Also for the manufacture and reinforcement beams used flat and U-shaped frames with working longitudinal reinforcement Ø22, Ø16, Ø12, Ø10, Ø6 A400C, and transverse reinforcement Ø6 A240C (step 120 mm). Reinforcement inclined sections of the experimental beams was performed on one, two or three sides, depending on the variant of the sample and the type of frame flat or U-shaped. Investigations of beams were performed according to the static scheme - a beam on two supports, span L=2100 mm. Deformations of concrete and reinforcement in the samples when determining the bearing capacity of inclined sections were measured using microindicators of the clock type, strain gauges. According to the results theoretical and experimental studies the bearing capacity inclined sections to the longitudinal axis, we can see a significant reassessment between the theoretical values inclined sections according to the new DBN B.2.6.-98: 2009 (Eurocode 2) over the actual results obtained during testing samples 53-67% for conventional beams, and 27-50% for reinforced beams. The results US regulations ACI 318-19 showed convergence of results in the range of 2-9% for samples without reinforcement and 1-7% for samples with reinforcement, but the values show the excess of experimental data over theoretical, indicating the impossibility of accurately determining the actual final bearing capacity. The results the calculation obtained by the method of SNiP 2.03.01-84*, both unreinforced and reinforced beams has a satisfactory agreement with the experimental values in the range of 6-10%.


This work evaluates the influence of the eccentricity of longitudinal force on the provision of the bearing capacity of an eccentrically compressed reinforced concrete element in the normal section at different percentages of longitudinal reinforcement. The nonlinear deformation model was used for probabilistic calculations, which made it possible to take into account the influence of strength and deformation characteristics of concrete on the bearing capacity of the elements of reinforced concrete structures. The dependences of the relative average value of the maximum longitudinal force and the coefficient of variation for the given percent of reinforcement on the eccentricity of the longitudinal force are obtained. The significant influence of the value of the longitudinal force eccentricity on the coefficient of variation of the bearing capacity of the eccentrically compressed concrete element in the normal cross section is shown. It is noted that the revealed dependence of the bearing capacity of eccentrically compressed reinforced concrete elements on the eccentricity of the longitudinal force is not taken into account in the existing methods of calculation.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2018 ◽  
Vol 878 ◽  
pp. 115-120
Author(s):  
Levon Avetisyan

This article presents a study of the strength of a 25-storey reinforced concrete frame against progressive collapse in fire conditions. Taking into account the angles of disclosure of plastic hinges as norming for the strength of reinforced concrete elements, a computer technology program has been developed and included in PR Wolfram Mathematica 10 for the dynamic calculation of compressed reinforced concrete elements under fire exposure on the basis of the conducted experimental studies. Dynamic calculation of the strength of eccentrically compressed reinforced concrete columns was carried out, with operation in normal conditions and under high temperatures. The diagram «moment-curvature» and the graph of the change of the static and dynamic strength of the column depending on the temperature were developed. Nonlinear dynamic analysis of a 25-storey reinforced concrete frame was conducted, taking into account the changes of the dynamic characteristics of reinforced concrete elements in fire and, the estimation of resistance of the frame was given.


2020 ◽  
Vol 164 ◽  
pp. 14008
Author(s):  
Dmitriy Sarkisov ◽  
Nikolay Gorlenko ◽  
Gleb Gorynin ◽  
Yuri Sarkisov ◽  
Gafurzhan Izmailov ◽  
...  

The paper deals with research data of reinforced concrete rectangular and I-shaped cross-section elements, operating under oblique eccentric short-term dynamic compression, tension and bending. The method of reinforced concrete elements calculation using the theory of surfaces of relative resistance regarding strength and crack resistance is suggested. It is based on the deformation model with the use of real nonlinear diagrams of concrete and reinforcement. This method makes it possible to observe strength and crack resistance of reinforced concrete elements sections in the entire range of loadings from the central tension to axial compression. Experimental investigation of symmetrically reinforced concrete elements on oblique eccentric short-term dynamic compression, tension and oblique bending was carried out. Effect of longitudinal force level on strain distribution through the depth of section, bearing capacity, the failure scheme and other parameters are estimated.


2017 ◽  
Vol 9 (2) ◽  
pp. 70-78 ◽  
Author(s):  
Justas SLAITAS ◽  
Zbynek HLAVAC ◽  
Arnoldas ŠNEIDERIS

This article examines flexural reinforced concrete structures condition assessment process in existing buildings on the stage where the reinforcement stress is between the yield and the tensile strength. The research is made on V. Jokūbaitis proposed methodology directly measuring the compression zone height, allowing us to evaluate the behavior of reinforced concrete beam fracture sufficiently precisely. This paper confirms the hypothesis that, when reinforcement reaches yielding stress, elastic strain dominates in concrete‘s compression zone and it is reasonable to use triangular concrete compression zone diagram, without tensile concrete above crack evaluation. The methodology of reinforced concrete structures bearing capacity assessment according to limit normal section crack depth is proposed. There is established connection between bending moments, when reinforcement achieve yielding stress and tensile strength, which allows us to decide about structures bearing capacity reserve. The results are confirmed with experimental studies and calculated values obtained by methodologies based on different reduced stress diagrams of concrete‘s compressive zone.


2020 ◽  
Vol 02 (10) ◽  
pp. 17-24
Author(s):  
Mahkamov Y.M. ◽  

In this article, the calculation of the strength and crack resistance of bending elements operating under conditions of high and high temperatures and transverse forces are proposed to be carried out according to a calculation model developed based on an analysis of experimental studies that takes into account more correctly the physics of the stress-strain phenomenon of the element.


Sign in / Sign up

Export Citation Format

Share Document