scholarly journals A Estimation of Stochastic Volatility Models Using Optimized Filtering Algorithms

2019 ◽  
Vol 48 (2) ◽  
Author(s):  
Saba Infante ◽  
Cesar Luna ◽  
Luis Sanchez ◽  
Aracelis Hernández

In this paper, we describe and implement two recursive filtering algorithms, the optimized particle filter, and the Viterbi algorithm, which allow the joint estimation of states and parameters of continuous-time stochastic volatility models, such as the Cox Ingersoll Ross and Heston model. In practice, good parameter estimates are required so that the models are able to generate accurate forecasts. To achieve the objectives the proposed algorithms were implemented using daily empirical data from the time series of the $S\&P500$ returns of the stock exchange index. The proposed methodology facilitates computational calculations of the marginal likelihood of states and allows the reconstruction of unknown states in a suitable way, and reliable estimation of the parameters. To measure the quality of estimation of the algorithms, we used the square root of the mean square error and relative deviation standard as measures of goodness of fit. The estimated errors are insignificant for the analyzed data and the two models considered. We also calculated the execution times of the algorithms, demonstrating that the Viterbi algorithm has less execution time than the optimized particle filter.

2017 ◽  
Vol 20 (08) ◽  
pp. 1750055 ◽  
Author(s):  
ZHENYU CUI ◽  
J. LARS KIRKBY ◽  
GUANGHUA LIAN ◽  
DUY NGUYEN

This paper contributes a generic probabilistic method to derive explicit exact probability densities for stochastic volatility models. Our method is based on a novel application of the exponential measure change in [Z. Palmowski & T. Rolski (2002) A technique for exponential change of measure for Markov processes, Bernoulli 8(6), 767–785]. With this generic approach, we first derive explicit probability densities in terms of model parameters for several stochastic volatility models with nonzero correlations, namely the Heston 1993, [Formula: see text], and a special case of the [Formula: see text]-Hypergeometric stochastic volatility models recently proposed by [J. Da Fonseca & C. Martini (2016) The [Formula: see text]-Hypergeometric stochastic volatility model, Stochastic Processes and their Applications 126(5), 1472–1502]. Then, we combine our method with a stochastic time change technique to develop explicit formulae for prices of timer options in the Heston model, the [Formula: see text] model and a special case of the [Formula: see text]-Hypergeometric model.


2010 ◽  
Vol 13 (05) ◽  
pp. 767-787 ◽  
Author(s):  
EMILIO BARUCCI ◽  
MARIA ELVIRA MANCINO

We consider general stochastic volatility models driven by continuous Brownian semimartingales, we show that the volatility of the variance and the leverage component (covariance between the asset price and the variance) can be reconstructed pathwise by exploiting Fourier analysis from the observation of the asset price. Specifying parametrically the asset price model we show that the method allows us to compute the parameters of the model. We provide a Monte Carlo experiment to recover the volatility and correlation parameters of the Heston model.


2019 ◽  
Vol 17 (4) ◽  
pp. 22
Author(s):  
Omar Abbara ◽  
Mauricio Zevallos

<p>The paper assesses the method proposed by Shumway and Stoffer (2006, Chapter 6, Section 10) to estimate the parameters and volatility of stochastic volatility models. First, the paper presents a Monte Carlo evaluation of the parameter estimates considering several distributions for the perturbations in the observation equation. Second, the method is assessed empirically, through backtesting evaluation of VaR forecasts of the S&amp;P 500 time series returns. In both analyses, the paper also evaluates the convenience of using the Fuller transformation.</p>


Author(s):  
Yun Bao ◽  
Carl Chiarella ◽  
Boda Kang

This chapter proposes an auxiliary particle filter algorithm for inference in regime switching stochastic volatility models in which the regime state is governed by a first-order Markov chain. It proposes an ongoing updated Dirichlet distribution to estimate the transition probabilities of the Markov chain in the auxiliary particle filter. A simulation-based algorithm is presented for the method that demonstrates the ability to estimate a class of models in which the probability that the system state transits from one regime to a different regime is relatively high. The methodology is implemented in order to analyze a real-time series, namely, the foreign exchange rate between the Australian dollar and the South Korean won.


2017 ◽  
Vol 04 (02n03) ◽  
pp. 1750024
Author(s):  
Elham Dastranj ◽  
Roghaye Latifi

Option pricing under two stochastic volatility models, double Heston model and double Heston with three jumps, is done. Firstly, the efficiency of the second model is shown via FFT method, and numerical examples using power call options. Then it is shown that power option yields more premium income under the second model, double Heston with three jumps, than another one.


2021 ◽  
Vol 53 (1) ◽  
pp. 220-250
Author(s):  
Zorana Grbac ◽  
David Krief ◽  
Peter Tankov

AbstractWe establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan’s lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.


Sign in / Sign up

Export Citation Format

Share Document