auxiliary particle
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Wan-Ting He ◽  
Huan-Yu Guang ◽  
Zi-Yun Li ◽  
Ru-Qiong Deng ◽  
Na-Na Zhang ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2189
Author(s):  
Suktae Kang ◽  
Myeong-Jong Yu

This study aims to design a robust particle filter using artificial intelligence algorithms to enhance estimation performance using a low-grade interferometric radar altimeter (IRA). Based on the synthetic aperture radar (SAR) interferometry technology, the IRA can extract three-dimensional ground coordinates with at least two antennas. However, some IRA uncertainties caused by geometric factors and IRA-inherent measurement errors have proven to be difficult to eliminate by signal processing. These uncertainties contaminate IRA outputs, crucially impacting the navigation performance of low-grade IRA sensors in particular. To deal with such uncertainties, an ant-mutated immune particle filter (AMIPF) is proposed. The proposed filter combines the ant colony optimization (ACO) algorithm with the immune auxiliary particle filter (IAPF) to bring individual mutation intensity. The immune system indicates the stochastic parameters of the ACO, which conducts the mutation process in one step for the purpose of computational efficiency. The ant mutation then moves particles into the most desirable position using parameters from the immune system to obtain optimal particle diversity. To verify the performance of the proposed filter, a terrain referenced navigation (TRN) simulation was conducted on an unmanned aerial vehicle (UAV). The Monte Carlo simulation results show that the proposed filter is not only more computationally efficient than the IAPF but also outperforms both the IAPF and the auxiliary particle filter (APF) in navigation performance and robustness.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Li Xue ◽  
Chunning Na ◽  
Yulan Han

In order to obtain the relatively appropriate importance density function and alleviate the problem of particle degradation, a new improved auxiliary particle filter algorithm is proposed. After calculating the auxiliary variable, the adaptive regulator is employed to obtain the state estimation. So, the latest measurement information is efficiently utilized to establish a better importance density function in the importance sampling process. Then, the process of particle weights’ adaptive adjustment and random-weighted calculation can keep the diversity of particles and improve the filter precision; thus, it can better solve the filter problem of nonlinear system model error and noise interference. The simulation and analysis result show that the proposed algorithm can optimize the filter performance and improve the calculation precision in the positioning of the SINS/SAR integrated navigation system, compared with the other two existing filters.


Sign in / Sign up

Export Citation Format

Share Document