scholarly journals Numerical investigation of the effect of flow circulation pattern and velocity on the performance of water-cooled heat sink

Author(s):  
Seyda ÖZBEKTAŞ ◽  
Bilal SUNGUR ◽  
Bahattin TOPALOĞLU
Author(s):  
Timothy J. Dake ◽  
Joseph Majdalani

In this paper, we show that improved air circulation above a heat sink is possible using thin winglet-type vortex generators that can be passively retrofitted to an existing unit. By mounting these vortex generators on the leading edge of heat sink fins, pairs of counter-rotating vortices are induced within the interfin spacing. The vortices disturb the boundary layers and serve to mix the air in the interfin channel. The devices we have designed are passive and can be added to existing systems using a simple clip-on mechanism. In this study, several designs are experimentally investigated for the purpose of identifying the optimal configuration that will be most conducive to flow enhancement and, therefore, heat transfer augmentation. Using the typical operational range of air velocities for PCs, routers and servers, an experimental simulation of the interfin channel reveals that certain vortex generators, when placed upstream, can outperform others in their ability to fill the channel with pairs of strong vortices. Multiple pairs can also be generated to further accentuate the heat transfer using dual vortex generators. A description of the specific shapes is furnished here along with particulars of the performance study. By control and manipulation of the vortices, our results suggest the possibility of optimizing the generator design. Experimentation was conducted in two phases. The first phase is a study of the ability to generate and control vortices within the fin channel. This aspect was simulated using a Lexan mock-up of the fin channel that permits introduction of glycerin smoke to visualize the shape, size, strength and structure of the vortices. The clear Lexan permitted viewing of the vortices by passing a red planar laser through the apparatus. The second phase involved using the optimization data gained in the first phase to generate vortices in an actual heat sink fitted with thermocouples to measure the temperatures at various points during heating.


Author(s):  
Zhichuan Sun ◽  
Yang Luo ◽  
Junye Li ◽  
Wei Li ◽  
Jingzhi Zhang ◽  
...  

Abstract The manifold microchannel heat sink receives an increasing number of attention lately due to its high heat flux dissipation. Numerical investigation of boiling phenomena in manifold microchannel (MMC) heat sinks remains a challenge due to the complexity of fluid route and the limitation of numerical accuracy. In this study, a computational fluid dynamics (CFD) approach including subcooled two-phase flow boiling process and conjugate heat transfer effect is performed using a MMC unit cell model. Different from steady-state single phase prediction in MMC heat sink, this type of modeling allows for the transient simulation for two-phase interface evolution during the boiling process. A validation case is conducted to validate the heat transfer phenomenon among three phases. Besides, this model is used for the assessment of the manifold dimensions in terms of inlet and outlet widths at the mass flux of 1300 kg/m2·s. With different ratios of inlet-to-outlet area, the thermal resistances remain nearly stable.


1980 ◽  
Vol 4 (1) ◽  
pp. 45-46 ◽  
Author(s):  
G. S. Lorimer ◽  
J. J. Monaghan

All studies of circulation in stars have been based on a linear perturbation analysis (e.g. Sung 1975). This analysis establishes criteria for the onset of circulation and, if the perturbations remain weak, allows the circulation pattern to be determined. (For a survey see Tassoul 1978).


Sign in / Sign up

Export Citation Format

Share Document