Improving Flow Circulation in Heat Sinks Using Quadrupole Vortices

Author(s):  
Timothy J. Dake ◽  
Joseph Majdalani

In this paper, we show that improved air circulation above a heat sink is possible using thin winglet-type vortex generators that can be passively retrofitted to an existing unit. By mounting these vortex generators on the leading edge of heat sink fins, pairs of counter-rotating vortices are induced within the interfin spacing. The vortices disturb the boundary layers and serve to mix the air in the interfin channel. The devices we have designed are passive and can be added to existing systems using a simple clip-on mechanism. In this study, several designs are experimentally investigated for the purpose of identifying the optimal configuration that will be most conducive to flow enhancement and, therefore, heat transfer augmentation. Using the typical operational range of air velocities for PCs, routers and servers, an experimental simulation of the interfin channel reveals that certain vortex generators, when placed upstream, can outperform others in their ability to fill the channel with pairs of strong vortices. Multiple pairs can also be generated to further accentuate the heat transfer using dual vortex generators. A description of the specific shapes is furnished here along with particulars of the performance study. By control and manipulation of the vortices, our results suggest the possibility of optimizing the generator design. Experimentation was conducted in two phases. The first phase is a study of the ability to generate and control vortices within the fin channel. This aspect was simulated using a Lexan mock-up of the fin channel that permits introduction of glycerin smoke to visualize the shape, size, strength and structure of the vortices. The clear Lexan permitted viewing of the vortices by passing a red planar laser through the apparatus. The second phase involved using the optimization data gained in the first phase to generate vortices in an actual heat sink fitted with thermocouples to measure the temperatures at various points during heating.

Author(s):  
Hung-Yi Li ◽  
Ci-Lei Chen ◽  
Shung-Ming Chao ◽  
Gu-Fan Liang

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5219
Author(s):  
Jin-Cherng Shyu ◽  
Jhao-Siang Jheng

Because the delta winglet in common-flow-down configuration has been recognized as an excellent type of vortex generators (VGs), this study aims to experimentally and numerically investigate the thermo-hydraulic performance of four different forms of winglet VGs featuring sweptback delta winglets in the channel flow in the range 200 < Re < 1000. Both Nusselt number and friction factor of plate-fin heat sinks having different forms of winglets, including delta winglet pair (DWP), rectangular winglet pair (RWP), swept delta winglet pair (SDWP), and swept trapezoid winglet pair (STWP), were measured in a standard wind tunnel without bypass in this study. Four rows of winglets with in-line arrangement were punched on each 10-mm-long, 0.2-mm-thick copper plate, and a total of 16 pieces of copper plates with spacing of 2 mm were fastened together to achieve the heat sink. The projected area, longitudinal and winglet tip spacing, height and angle of attack of those winglets were fixed. Besides that, three-dimensional numerical simulation was also performed in order to investigate the temperature and fluid flow over the plate-fin. The results showed that the longitudinal, common-flow-down vortices generated by the VGs augmented the heat transfer and pressure drop of the heat sink. At airflow velocity of 5 m/s, the heat transfer coefficient and pressure drop of plain plate-fin heat sink were 50.8 W/m2·K and 18 Pa, respectively, while the heat transfer coefficient and the pressure drop of heat sink having SDWP were 70.4 W/m2·K and 36 Pa, respectively. It was found that SDWP produced the highest thermal enhancement factor (TEF) of 1.28 at Re = 1000, followed by both RWP and STWP of similar TEF in the range 200 < Re < 1000. The TEF of DWP was the lowest and it was rapidly increased with the increase of airflow velocity.


Author(s):  
Yong-Jiun Lee ◽  
Poh-Seng Lee ◽  
Siaw-Kiang Chou

Sectional oblique fins are employed in contrast to the continuous fins in order to modulate the flow in microchannel heat sink. Experimental investigation of silicon based oblique finned microchannel heat sink demonstrated a highly augmented and uniform heat transfer performance against the conventional microchannel. The breakage of continuous fin into oblique sections leads to the re-initialization of the thermal boundary layers at the leading edge of each oblique fin, effectively reducing the boundary-layer thickness. This regeneration of the entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a fraction of the flow into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. The average Nusselt number, Nuave, for the silicon microchannel heat sink which uses water as the working fluid can increase as much as 55%, from 8.8 to 13.6. Besides, the augmented convective heat transfer leads to reduction in both maximum chip temperature and its temperature gradient, by 8.6°C and 47% respectively. Interestingly, there is only little or negligible pressure drop penalty associated with this novel heat transfer enhancement scheme in contrast to conventional enhancement techniques.


1988 ◽  
Vol 110 (2) ◽  
pp. 226-232 ◽  
Author(s):  
A. R. Wadia ◽  
D. A. Nealy

Leading edge showerhead cooling designs represent an important feature of certain classes of high-temperature turbine airfoils. This paper outlines a methodology for predicting the surface temperatures of showerhead designs with spanwise injection through an array of discrete holes. The paper describes a series of experiments and analyses on scaled cylinder models with injection through holes inclined at 20, 30, 45, and 90 deg for typical radial and circumferential spacing-to-diameter ratios of 10 and 4, respectively. The experiments were conducted in a wind tunnel on several stainless steel test specimens in which flow and heat transfer parameters were measured over the simulated airfoil leading edge surfaces. Based on the experiments, an engineering design model is proposed that treats the gas-to-surface heat transfer coefficient with film cooling in a manner suggested by a recent Purdue–NASA investigation and includes the important contribution of upstream (coolant inlet face) heat transfer. The experiments suggest that the averaged film cooling effectiveness in the showerhead region is primarily influenced by the inclination of the injection holes. The effectiveness parameter is not strongly affected by variations in coolant-to-gas stream pressure ratio, free-stream Mach number, gas-to-coolant temperature ratio, and gas stream Reynolds number. The model is employed to determine (inferentially) the average Stanton number reduction parameter for a series of pressure ratios varying from 1.004 to 1.3, Mach numbers ranging from 0.1 to 0.2, temperature ratios between 1.6 and 2.0, and Reynolds numbers ranging from 3.5×104 to 9.0×104.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Y. J. Lee ◽  
P. S. Lee ◽  
S. K. Chou

Sectional oblique fins are employed in contrast to continuous fins in order to modulate flow in microchannel heat sink. The breakage of continuous fin into oblique sections leads to the reinitialization of both hydrodynamic and thermal boundary layers at the leading edge of each oblique fin, effectively reducing the thickness of boundary layer. This regeneration of entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a small fraction of flow into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. Detailed numerical study on the fluid flow and heat transfer of this passive heat transfer enhancement technique provides insight to the local hydrodynamics and thermal development along the oblique fin. The uniquely skewed hydrodynamic and thermal profiles are identified as the key to the highly augmented and uniform heat transfer performance across the heat sink. The associated pressure drop penalty is much smaller than the achieved heat transfer enhancement, rendering it as an effective heat transfer enhancement scheme for single phase microchannel heat sink.


Author(s):  
Yong-Jiun Lee ◽  
Poh-Seng Lee ◽  
Siaw-Kiang Chou

Oblique fins created in a microchannel heat sink can serve to modulate the flow, resulting in local and global heat transfer enhancement. Numerical analysis of laminar flow and heat transfer in such modified microchannel heat sink showed that significant enhancement of heat transfer can be achieved with negligible pressure drop penalty. The breakage of continuous fin into oblique sections causes the thermal boundary layers to be re-initialized at the leading edge of each oblique fin and reduces the boundary-layer thickness. This regeneration of the entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of the smaller oblique channels causes a fraction of the flow to branch into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. The combination of the entrance and secondary flow effect results in a much improved heat transfer performance (the average and local heat transfer coefficients are enhanced by as much as 80%). Both the maximum wall temperature and temperature gradient are substantially decreased as a result.


Sign in / Sign up

Export Citation Format

Share Document