scholarly journals Quality improvement in clinical biochemistry laboratory using six sigma metrics and quality goal index

2021 ◽  
Vol 9 (2) ◽  
pp. 101-107
Author(s):  
Maheshwari A ◽  
Sadariya B ◽  
Javia HN ◽  
Sharma D

Introduction: One of the most popular quality management system tackle employed for process perfection is six sigma. When the process outcome is measurable, six sigma can be used to assess the quality. Aim: Present study was conducted with the objective to apply six sigma matrices and quality goal index for the assessment of quality assurance in a clinical biochemistry laboratory. Materials and methods: Present study is a retrospective study. Internal and external quality control data were analyzed retrospectively during July 2020 to December 2020. Descriptive statistics like laboratory mean ± standard deviation; bias and coefficient of variation (CV) were calculated for the parameters glucose, urea, creatinine, ALT (SGPT), AST (SGOT), cholesterol, triglyceride and HDL. Sigma value was calculated for both level I & level II of internal quality control (IQC). Results: Satisfactory sigma values (≥3) were elicited for blood glucose, cholesterol, triglyceride, HDL, urea and creatinine, while ALT (SGPT) and AST (SGOT) performed poorly (<3) on the sigma scale. The quality goal index (QGI) ratio was found (> 1.2) for only 2 parameters SGPT and SGOT (with sigma value <3) for both levels 1 and 2, indicating inaccuracy. Conclusion: Results of present study focuses on meticulous appraisal and execution of quality measures to improve sigma standards of all the analytical processes. Even though six sigma provides benefits over former approaches to quality assurance, it also opens newer challenges for laboratory practitioners. Therefore, sigma metric analysis provides a point of reference to design a protocol for IQC for the laboratory; address poor assess performance, and assess the existing laboratory process efficiency.

Author(s):  
Smita Natvarbhai Vasava ◽  
Roshni Gokaldas Sadaria

Introduction: Now-a-days quality is the key aspect of clinical laboratory services. The six sigma metrics is an important quality measurement method for evaluating the performance of the clinical laboratory. Aim: To assess the analytical performance of clinical biochemistry laboratory by utilising thyroid profile and cortisol parameters from Internal Quality Control (IQC) data and to calculate sigma values. Materials and Methods: Study was conducted at Clinical Biochemistry Laboratory, Dhiraj General Hospital, Piparia, Gujarat, India. Retrospectively, IQC data of thyroid profile and cortisol were utilised for six subsequent months (July to December 2019). Coefficient of Variation (CV%) and bias were calculated from IQC data, from that the sigma values were calculated. The sigma values <3, >3 and >6 were indicated by poor performance procedure, good performance and world class performance, respectively. Results: The sigma values were estimated by calculating mean of six months. The mean sigma value of Thyroid Stimulating Hormone (TSH) and Cortisol were >3 for six months which indicated the good performance. However, sigma value of Triiodothyronine (T3), Tetraiodothyronine (T4) were found to be <3 which indicated poor performance. Conclusion: Six sigma methodology applications for thyroid profile and cortisol was evaluated, it was generally found as good. While T3 and T4 parameters showed low sigma values which requires detailed root cause analysis of analytical process. With the help of six sigma methodology, in clinical biochemistry laboratories, an appropriate Quality Control (QC) programming should be done for each parameter. To maintain six sigma levels is challenging to quality management personnel of laboratory, but it will be helpful to improve quality level in the clinical laboratories.


Author(s):  
Trupti Diwan Ramteke ◽  
Anita Shivaji Chalak ◽  
Shalini Nitin Maksane

Introduction: Any error in the laboratory testing processes can affect the diagnosis and patient management. Six Sigma is a data driven quality management system for identifying and reducing errors and variations in clinical laboratory processes. Aim: This study was carried out to estimate Sigma metrics of various biochemical analytes in order to evaluate performance of quality control and implement optimum quality control strategy for each analyte. Quality goal index (QGI) was also calculated to identify the problems of inaccuracy and imprecision for parameters having lower sigma values. Materials and Methods: This retrospective, observational study was conducted at the Central Clinical Biochemistry Laboratory of Seth GS Medical College and KEM hospital in Mumbai for a period of six months (July 2019 to December 2019). Sigma metrics for 20 analytes was calculated by using internal quality control and external quality control data. Further, QGI was calculated for analytes having sigma value of <4 to identify imprecision or inaccuracy. Statistical analysis was performed using Microsoft office excel 2010 software. Results: Total protein, Glucose, Urea, Triglyceride (TAG), High Density Lipoprotein (HDL), and Low Density Lipoprotein (LDL) for normal (L1) and pathological (L2) controls achieved excellent performance (>6 sigma). Westgard rule (13s) with two control measurement (N2) per QC event and run size (R1000) i.e. 1000 patient samples between consecutive QC events was adopted for these analytes. For analytes with sigma value of 4-6, more rules (sigma 4-5: Westgardrules-13s/22s/R4s/41s, N4 and R200 and for sigma value 5-6: 13S/22s/R4s, N2 and R450) were adopted. The sigma values of six analytes (Creatinine, Sodium, Potassium, Calcium, Chloride, Inorganic phosphate) were <4 at one or more QC levels. For these analytes, strict QC procedures (Westgard rules-13s/22s/R4s/41s/6x, N4 and R45) were incorporated. QGI of these analytes was <0.8 which indicated the problem of imprecision. Staff training programs and review of standard operating procedures were done for these analytes to improve method performance. Conclusion: Sigma Metrics estimation helps in designing optimum QC protocols, minimising unnecessary QC runs and reducing the cost for analytes having high sigma metrics. Focused and effective QC strategy for analytes having low sigma helps in improving the performance of those analytes.


2019 ◽  
Vol 11 (3) ◽  
pp. 100-103
Author(s):  
Ramya KR ◽  
◽  
Vijetha Shenoy Belle ◽  
Pravesh Hegde ◽  
Sushma Jogi ◽  
...  

Author(s):  
Akriti Kashyap ◽  
Sangeetha Sampath ◽  
Preeti Tripathi ◽  
Arijit Sen

Abstract Background Six Sigma is a widely accepted quality management system that provides an objective assessment of analytical methods and instrumentation. Six Sigma scale typically runs from 0 to 6, with sigma value above 6 being considered adequate and 3 sigma being considered the minimal acceptable performance for a process. Methodology Sigma metrics of 10 biochemistry parameters, namely glucose, triglycerides, high-density lipoprotein (HDL), albumin, direct bilirubin, alanine transaminase, aspartate transaminase, urea nitrogen, creatinine and uric acid, and hematology parameters such as hemoglobin (Hb), total leucocyte count (TLC), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and platelet were calculated by analyzing internal quality control (IQC) data of 3 months (June–August 2019). Results Sigma value was found to be > 6 for triglyceride, HDL, Hb, TLC, and MCH, signifying excellent results and no further modification with respect to IQC. Sigma value was between 3 and 6 for glucose, albumin, creatinine, uric acid, PCV, and MCHC, implying the requirement of improvement in quality control (QC) processes. Sigma value of < 3 was seen in AST, ALT, direct bilirubin, urea nitrogen, platelet, and MCV, signifying suboptimal performance. Discussion Six Sigma provides a more quantitative framework for evaluating process performance with evidence for process improvement and describes how many sigmas fit within the tolerance limits.Thus, for parameters with sigma value < 3, duplicate testing of the sample along with three QCs three times a day may be used along with stringent Westgard rules for rejecting a run. Conclusion Sigma metrics help assess analytical methodologies and augment laboratory performance.


Author(s):  
G. Anuradha ◽  
S. Santhinigopalakrishnan ◽  
S. Sumathy

Background: Physicians rely on laboratory results for treating patients. So it is the duty of laboratories to assure quality of the results released. So laboratory performance should be validated to maintain the quality. Six sigma has now gained recent interest in monitoring the laboratory quality.This study was designed to gauge the clinical chemistry parameters based on six sigma metrics. Materials and Methods: In this retrospective study, both the internal and external quality control data of 26 clinical chemistry parameters were collected for a period of 6 months from June 2020 to November 2020 and the six sigma analysis was done at the Central clinical biochemistry laboratory of Chettinad Hospital and research institute. Results: AST, amylase, lipase, triglyceride, HDL, iron, magnesium, creatine kinase showed sigma values more than 6.Uric acid, total protein, ALT, direct bilirubin, GGT,cholesterol, cholesterol, calcium, TIBC and phosphorus shows sigma values between 3.5 to 6. Glucose, BUN, creatinine, albumin, Na, K, Chloride, showed sigma values less than 3.5. Conclusion: Six sigma metrics can help in improving the quality of laboratory performance and also helps to standardisethe actual amount of QC that is required by the laboratory for maintaining quality.


Author(s):  
Gavin P Spickett

Introduction Structure of the NHS and the NHS plan Clinical Pathology Accreditation (CPA) Medicines and Healthcare Products Regulatory Authority (MHRA) Quality management system (QMS) Concepts of quality assurance in the laboratory Quality control (internal) Quality control (external) 1: EQA schemes Quality control (external) 2: benchmarking and CE marking...


1995 ◽  
Vol 48 (3) ◽  
pp. 198-202 ◽  
Author(s):  
J J Gray ◽  
T G Wreghitt ◽  
T A McKee ◽  
P McIntyre ◽  
C E Roth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document