scholarly journals Magnesite soapstone in use of fire chamber constructions: composition and structure adaptation

2019 ◽  
Vol 91 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Anne Huhta ◽  
◽  
Pekka Tuisku ◽  
Tonci Balic-Zunic ◽  
Aulis Kärki ◽  
...  
Author(s):  
A. F. Marshall ◽  
J. W. Steeds ◽  
D. Bouchet ◽  
S. L. Shinde ◽  
R. G. Walmsley

Convergent beam electron diffraction is a powerful technique for determining the crystal structure of a material in TEM. In this paper we have applied it to the study of the intermetallic phases in the Cu-rich end of the Cu-Zr system. These phases are highly ordered. Their composition and structure has been previously studied by microprobe and x-ray diffraction with sometimes conflicting results.The crystalline phases were obtained by annealing amorphous sputter-deposited Cu-Zr. Specimens were thinned for TEM by ion milling and observed in a Philips EM 400. Due to the large unit cells involved, a small convergence angle of diffraction was used; however, the three-dimensional lattice and symmetry information of convergent beam microdiffraction patterns is still present. The results are as follows:1) 21 at% Zr in Cu: annealed at 500°C for 5 hours. An intermetallic phase, Cu3.6Zr (21.7% Zr), space group P6/m has been proposed near this composition (2). The major phase of our annealed material was hexagonal with a point group determined as 6/m.


Author(s):  
J.K. Weiss ◽  
M. Gajdardziska-Josifovska ◽  
M. R. McCartney ◽  
David J. Smith

Interfacial structure is a controlling parameter in the behavior of many materials. Electron microscopy methods are widely used for characterizing such features as interface abruptness and chemical segregation at interfaces. The problem for high resolution microscopy is to establish optimum imaging conditions for extracting this information. We have found that off-axis electron holography can provide useful information for the study of interfaces that is not easily obtained by other techniques.Electron holography permits the recovery of both the amplitude and the phase of the image wave. Recent studies have applied the information obtained from electron holograms to characterizing magnetic and electric fields in materials and also to atomic-scale resolution enhancement. The phase of an electron wave passing through a specimen is shifted by an amount which is proportional to the product of the specimen thickness and the projected electrostatic potential (ignoring magnetic fields and diffraction effects). If atomic-scale variations are ignored, the potential in the specimen is described by the mean inner potential, a bulk property sensitive to both composition and structure. For the study of interfaces, the specimen thickness is assumed to be approximately constant across the interface, so that the phase of the image wave will give a picture of mean inner potential across the interface.


2019 ◽  
Vol 326 (3) ◽  
pp. 76-78
Author(s):  
V.L. Nalobova ◽  
◽  
N.S. Opimah ◽  
M.V. Nalobova ◽  
I.V. Haponenka ◽  
...  

Author(s):  
Alexander G. Okhapkin ◽  
Tabet Hhedairia

The preliminary estimation of composition and structure of diatoms in the benthos of the Oka River allowed to determine the clear spatiotemporal confinedness of structure in such communities of them which has the most diverse composition in the low water period while water temperature decreasing.


2019 ◽  
Vol 2019 (1) ◽  
pp. 29-39
Author(s):  
A.E. Marchenko ◽  
◽  
V.V. Trachevsky ◽  
N.V. Skorina ◽  
◽  
...  

1996 ◽  
Vol 451 ◽  
Author(s):  
S. D. Leith ◽  
D. T. Schwartz

ABSTRACTDescribed are results showing that an oscillating flow-field can induce spatially periodic composition variations in electrodeposited NiFe films. Flow-induced NiFe composition modulated alloys (CMA's) were deposited on the disk of a rotating disk electrode by oscillating the disk rotation rate during galvanostatic plating. Deposit composition and structure were investigated using potentiostatic stripping voltammetry and scanning probe microscopy. Results illustrate a linear relationship between the composition modulation wavelength and the flow oscillation period. CMA's with wavelengths less than 10 nm can be fabricated when plating with a disk rotation rate oscillation period less than 3 seconds.


Sign in / Sign up

Export Citation Format

Share Document